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INTRODUCTION 
 
Lasers flashing pico to femtosecond pulses are now current laboratory facilities and clock periods of 
today’s electronic microdevices reach a few hundredths of picosecond. The involved heat conduction 
regimes are clearly out of equilibrium and have generated much interest for four decades as 
emphasized in literature 1. The basic reformulation of Fourier’s Law consists in adding an inertia term  
which allows to derive the well known hyperbolic heat conduction equation: 
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where α represents the thermal diffusivity and τ the heat flux relaxation time. Eq. (0) however leads to 
a paradox to entropy principle and solving Boltzmann Equation seems inevitable 2,3. A simpler 
approach was nevertheless recently proposed based on the heat flux decomposition into ballistic and 
diffusive contributions 5. 
 
We report a direct way to derive the heat flux response to an ultra-short temperature pulse generated in 
bulk Si crystals. While classical approach implies insensitivity of initial heat flux to pulse duration, we 
predict an linear dependence between both quantities. We investigate the relevance of this result based 
on molecular dynamics (MD) simulations performed in Si crystal showing accordance with predicted 
heat fluxes. 
 

METHOD 
 
Linear response theory defines the thermal susceptibility as proportional to the autocorrelation function 
of heat flux fluctuations at equilibrium <q0(0)q0(t)> 4,5. The heat flux <q(t)> generated by a thermal 
time-dependent excitation e(t) can then be expressed as: 
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Where V is the sample volume, kB the Boltzmann constant and T the equilibrium temperature. A 
simple but relevant modeling of the autocorrelation function is a decaying exponential with 
characteristic time equals to phonon relaxation time τ. This approximation leads to the following non-
dimensioned heat flux response: 
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β being the pulse duration. 
 We show how to retrieve this behavior from molecular dynamics simulations. In MD 
computations, all the particle trajectories (positions and velocities ri and vi) for a given system with a 
reasonably small number of atoms are calculated, which allows the derivation of the thermodynamic 
quantities of the system. The heat flux expression is derived from different formalisms (mechanical, 
spectral…), leading all to the same expression for the computed two and three-body potentials: 
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where Fij and Fijk are the two and three-body forces and V is the system volume. Eq. (3) only includes 
positions, velocities and forces that are directly computed in basic MD simulations. Direct calculation 
of Eq. (0) can therefore be performed. The autocorrelation function was computed as indicated in Fig. 
(1) and numerical convolution allowed to obtain the thermal response to heat pulses with different 
durations. 

 
Figure 1: Heat flux autocorrelation function in a Si crystal at 200K (black line) and 500K (grey line) 

 
CONCLUSION 

 
In conclusion, we have show that the response to pico-femto laser pulses implies disagreements with 
classical predictions. Depending on the excitation duration, the ability of the medium to conduct heat 
can be reduced by two orders of magnitude. MD appears as a very unique method providing 
information on the crystal behaviour when femtoscale thermal perturbations are applied. 
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