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A new numerical algorithm for calculating advection and diffusion of a species within and between
fluids with interfaces is described. The method, based on a Volume of Fluid (VOF) technique,
employs a special treatment of computational cells which contain the interface to prevent errors in
the predicted mass transfer due to smearing of the concentration profile. The algorithm is then used
to predict mass transfer from a rising drop to the surrounding liquid for a particular experiment
reported in the literature. A typical flow and concentration distribution calculated in the drop is
shown, and the fractional change in the predicted solute concentration in the drop is found to be
consistent with the experimental data.

INTRODUCTION

Mass transfer across deforming fluid interfaces such as drops, bubbles, or free surfaces is of generic
interest and is important in a great many applications including most separation processes in which
gases and liquids are involved, reactions with rising bubbles or falling drops in metal refining. In
general, diffusion of material within each phase occurs as well as transfer across the interface. The
diffusion coefficients in each phase usually differ, and the material concentration often exhibits a
step change at the interface.

Since the interface is deforming, any numerical calculation of mass transfer across it must be
performed simultaneously with a simulation of the fluid flow. However, there appears to be no
published method which demonstrates accurate calculation of mass transfer across arbitrarily
complicated deforming interfaces. Recent numerical studies include Ponoth and McLaughlin’, who
predicted the dissolution of steady-state (i.e. non-deforming) rising bubbles using a finite difference
method with an adaptive mesh, and Chen et al.” who considered evaporation at the surface of gas
bubbles rising in a liquid where the flow was simulated using a VOF method but was not validated
for the evaporation case.

The numerical algorithm presented here for calculating advection and diffusion of a species within
and between fluids with interfaces is based on novel enhancements to the VOF technique described
in Rudman®. The problem is discretised on a uniform staggered mesh. Special treatment of
computational cells which contain the interface is required to prevent errors in the predicted mass
transfer of up to two orders of magnitude. Briefly, the transport of the bulk species concentrations in
each phase involves VOF-based advection fluxes at interface cells and Flux-Corrected Transport*
with centred fourth order differencing for the higher order fluxes away from the interface. The
numerical discretisation of the diffusive fluxes is based on an analysis of one-dimensional diffusion
across an interface.



Predictions are first compared with results of an analytical solution for a test problem involving
diffusion from a sphere with uniform initial solute concentration during simple translation. This is
followed by a calculation of the flow and concentration distribution for a rising drop in the
circulating drop regime (non-oscillating) when mass transfer is controlled by the dispersed (drop)
phase. The specific case considered corresponds to an experiment by Temos, Pratt & Stevens® for
which data are presented in their Figure 6.

RESULTS

The prediction of diffusion with and without advection is first tested for the idealised case of a
spherical drop, initially with uniform solute concentration, which is translated vertically with a
prescribed uniform sinusoidal velocity field in a liquid in which the solute concentration can be
regarded as zero (dispersed phase diffusion control). This problem has an analytical solution which
is identical to that for diffusion from a stationary sphere®. It is essentially the Newman equation
referred to in the solvent extraction literature’. Figure 1a shows that the fractional solute content in
the sphere for diffusion without convection is almost identical to the analytical solution, and the
corresponding prediction for combined advection and diffusion underpredicts the solute content for
dimensionless times below 100 and overpredicts at times greater than 200. Figure 1b shows that the
solute concentration changes proceed symmetrically within the sphere as required, except for some
flattening on the left and right sides associated with the purely vertical velocity field.
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Figure 1: (a) Predicted solute content of a translating sphere of radius a vs the analytical solution
for Pe = RY? gl/ 2/ D1 =5%10%, and (b) a snapshot of the evolving concentration distribution.

Figure 2 shows a typical solute concentration distribution and velocity vector field relative to the
leading edge of a drop, predicted for an experiment of Temos, Pratt & Stevens® when mass transfer
is controlled by the dispersed phase and the drop is non-oscillating. The region shown is only a
small section of the computational domain around the drop. The Reynolds number equals 382,
based on drop diameter and continuous phase properties. Figure 2 shows a toroidal recirculation
within the drop as well as the region of highest solute concentration at the core of the recirculation
cells. The central portion of the drop becomes depleted in solute as it is swept by the recirculation
towards the drop surface where it can enter the continuous phase.



Because the initial solute concentration in the drop just after release into the liquid column is not
known for the experiment of Temos, Pratt & Stevens’, direct comparison of predicted and
experimental drop concentration values is not possible. An attempt is made to compare the two by
superimposing the plots shown in Figure 3. Because the initial concentration is unknown, the
correct relative positioning of each plot is also unknown. The vertical shift imposed in Figure 3 is
one which brings the predicted and experimental results into closest alignment. Although this
cannot test the actual values predicted, it does provide a comparison of the predicted and
experimental fractional concentration change. Figure 3 shows that the predicted fractional change is
consistent with the concentration data for this experiment.

Figure 2: Predicted solute concentration distribution and velocity vector field relative to the leading
edge of the drop (initial radius a) for an experiment’ at two dimensionless times t* =t\/g/a
(dispersed phase control with Re =382 based on drop diameter and continuous phase properties)
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Figure 3: Superimposed plots based on predicted fractional solute content and experimental values’
@ of solute concentration in the drop against height reached by the rising drop. The vertical axis in
each case involves the inverse of the concentration.



CONCLUSION

There is a large body of literature concerning mass transfer between a rising drop and the
surrounding liquid™®. Typically, the drop deforms and an internal circulation is set up within it as it
rises. In the absence of a full solution of the coupled flow and mass transfer, mathematical models
have necessarily been approximate in their representation of the operating mechanisms. The
Volume-of-Fluid numerical method used here has the potential to provide accurate predictions of
the detailed flow and concentration distribution in and around the deforming drop, and does not
require simplifying assumptions about the drop shape or the form of the internal circulation. The
method employs a special treatment of computational cells which contain the interface to prevent
advective smearing of the concentration profile there, and approximates the diffusive fluxes based
on an analysis of one-dimensional diffusion across an interface.

In preliminary calculations, the method accurately predicts diffusion from a drop undergoing a
uniform sinusoidal translation. Calculation of an experiment by Temos, Pratt & Stevens’ for
dispersed phase control of mass transfer predicted fractional changes in overall drop concentration
which were consistent with the experimental data. The predicted concentration distribution and
relative velocity field were presented, highlighting the recirculation pattern within the drop.
However, many more tests against available data are required to fully evaluate the numerical model
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