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Thermocapillary convection is a surface tension driven flow due to a temperature gradient along an 
interface. It is steady and axisymmetric when the driving temperature difference in an open cylindri
cal cavity, or a liquid bridge, is sufficiently small. This steady convection undergoes transition to os
cillatory, three-
dimensional flow as the temperature difference increases beyond a critical value. Because surface f
orces dominate body forces in space, understanding these transitions is important to material proces
sing in microgravity. Although a few numerical studies with deformable surfaces have been perfor
med in two-
dimensional rectangular cavities, there is no work available for cylindrical liquid bridges. Here we r
eport on a numerical study of axisymmetric thermocapillary convection in liquid bridges with defor
mable surfaces. The interface is determined as part of the complete solution. The influence of capill
ary number, Reynolds number and aspect ratio on the dynamics is explored. 
 

MATHEMATICAL AND NUMERICAL MODEL 
 

The physical system considered is a liquid bridge with a deformable free surface as shown in Fig. 1.
 A Prandtl number (Pr) of 1 is assumed, and the aspect ratio (Ar) is defined by R/H, where R and H 
are, respectively, the radius and height of the liquid bridge. The upper and lower disks have nondim
ensional temperatures Thot=1 and Tcold=0. The Biot number, Bi, which gives free-
surface heat loss is assumed zero. 
 
The free-
surface shape, g(t,z), is unknown and is determined as part of the solution to the coupled governing 
equations. In order to solve the problem, the physical domain is mapped into a rectangular computat
ional domain. The transformed governing equations and boundary conditions are solved by a finite 
volume method employing a SIMPLER algorithm. Nonuniform grids are constructed with finer mes
hes in the regions near the free surface and the upper and lower walls where the boundary layers de
velop. A brief summary of the computational procedure is as follows: 

1. Start with initial conditions for temperature (T), velocity (v) and free-surface shape (g), 
2. The rectangular computational domain is generated numerically, 
3. Solve the transformed governing equations to find T and v with the transformed boundary c

onditions, 
4. Calculate g to satisfy the normal stress balance and conserved liquid volume equations, 
5. Steps (2)-

(4) are repeated at each time step until all conditions for T, v and g are satisfied with the des
ired accuracy, 

6. Return to step (1) for the next time. 
Because no data with deforming liquid bridges are available in the literature, the numerical is valida
ted against known results for a flat surface in Table 1. Our results with zero capillary number (Ca=0
, flat nondeformable surface) are in good agreement with those from other studies1,2. 



 
RESULTS AND DISCUSSION 

 
We have investigated convection up to Re=5000 with Pr=1, Ar=0.5, 1 and 2 and various Ca≤ 0.1, a
nd have found no oscillatory axisymmetric states. Assuming nondeformable flat interfaces, the criti
cal Re for transition to oscillatory states is about 2500 from linear theory2,3 and three-
dimensional numerical simulations4. Since Ca is in the range O(10-2)-O(10-

3) in most experiments5, we conclude that dynamic free-
surface deformations do not induce transition to oscillatory axisymmetric convection. Thus only azi
muthal waves can generate oscillations in a liquid bridge with either non-
deformable or deformable surfaces. This is consistent with studies of convection in other cylindrical
 geometries4,6. 
 
Figure 2 shows free surfaces with Ar=1, Ca=0.05 and various Re. These are convex near the lower 
cold wall, and change from concave to convex with increasing Re near the hot wall. At sufficiently 
low Re, the free surface is almost asymmetric about its mid point. It has two peaks and is elevated n
ear the cold stagnation point where surface pressure achieves its maximum value. As Re increases, t
he free surface develops three peeks. The surface deformations are O(10-

4), and its maximum value is 1.2 10× -

3 with Ca=0.1. The effect of Ca on surface deformations is shown in Fig. 3. Surface elevations and 
depressions increase with increasing Ca, while its shape is independent of Ca at a fixed Re. Four pe
aks are observed on the free surface at a high Re. Figure 4 shows stream function minima, surface t
emperatures and velocities at various Ca and Re=2500. They are independent of Ca. Thus dynamic 
free-
surface deformations with Ca 0.1 do not influence the convection in the liquid bridge. Figure 5 sh
ows surface deformations with Ar=0.5, Re=2500 and various Ca. The free surface is almost asymm
etric about its mid point with its shape independent of Ca.. 

≤

 
CONCLUSIONS 

Steady axisymmetric thermocapillary convection phenomenon in a liquid bridge heated from the up
per wall is examined. Two-dimensional simulations with either non-
deformable or deformable surfaces predict steady convection even at very high Re and Ca. Thus, dy
namic free-
surface deformations do not induce transitions to oscillatory axisymmetric convection. Free surface
s are convex at the cold corner. At the hot corner they change from concave to convex with increasi
ng Re at fixed Ca. At low Re, surface deformations are determined by surface pressure variation. T
wo peaks may be observed at low Re and the number of peaks increases to four with increasing Re. 
Normal viscous stresses become important with increasing Re in particular near the hot corner wher
e consecutive free surface elevation and depression occur. Surface deformations are larger with incr
easing Ca and are O(10-

4) with Ar=1 and Ca 0.1. With decreasing Ar at fixed Re and Ca, surface deformations are larger. 
Thermocapillary convection inside the liquid bridge is insensitive to variations in Ca. 

≤
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Table 1: Comparison of stream function minima ( ) in a 2D liquid bridges (Bi=0.3, Ar=1 a
nd Ca=0) 

2
min 10×ψ

Re Pr Sumner et al. 1 Wanschura et al. 2 Present results 
100 0.1  -1.02 -1.031 
100 10 -0.4221 -0.425 -0.4216 
10 100 -0.4205  -0.42 

 
                                                                                            
 
                                                                                           
 
 
 
 
 
 
 
 
 
 

Fig. 1: Physical System.                                       Fig. 2: Free surface shapes with Ar=1, Bi=0, 
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Fig. 3: Free surface deformations with Ar=1, Bi=0,            Fig. 4: Surface temperature and velocity 
            Re=2500 and various Ca.                                                   distributions corresponding to Fig. 3. 
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Fig. 5: Free surface shapes with Ar=0.5, Bi=0, 
                 Re=2500 and various Ca. 
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