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We propose methods for mass and heat transfer between flows of dispersed media through a con-
vectively permeable surface separating them (which is permeable for fluid phases of flows)1,2; they 
are an alternative to heat transfer processes in heterogeneous liquid- and gas-dispersion systems1,2. 
These methods are conducted by initiating the repeated exchange of portions of fluid (liquid or gas-
eous) phases between the flows. Our paper is concerned with the case when the initiated heat ex-
change is created by alternating differences of the pressure between the flows. 
 
The description of a valve-type pulsating-flow heat exchanger 
Heat transfer between the flows of dispersed media is accomplished, for example, in the valve-type 
pulsating-flow heat exchanger shown in Fig. 1. The heat exchanger has two adjacent channels 1 and 
2 separated by a partition 3 that is permeable for fluid phases of the flows1,2. The operation of the 
heat exchanger is based on two time steps of duration ts alternating successively in time, depending 
on the state of valves 4–7. During the first time step, 4 and 7 are open but 5 and 6 are closed. In this 
case, the first dispersed medium with an initial temperature of θ1(0,t)=θ1in is conveyed by means of 
pump 9 through 4 to 1 and is filtered through 3 creating a flow in 2, wherefrom it is discharged at a 
temperature θ2(0,t)=θ2out through open 7. During the second time step, 4 and 7 are closed but 5 and 
6 are open. In this case, the second dispersed medium with an initial temperature of θ2(L,t)=θ2in is 
conveyed by means of pump 10 through 6 to 2 and filtered through 3 creating a flow in 1, where-
from it is discharged at the outlet temperature θ1(L,t)=θ1out through open 5. Here, θ is the fluid-
phase temperature, t is time, and L is the channel length. Thus, an alternating pressure difference is 
set up between the channels. With such a pulsating movement of the 1st and the 2nd dispersed me-
dia in the heat exchanger, portions of their fluid phases are exchanged many times without mixing 
up with their solid dispersed phases. In the process, countercurrent convective heat transfer takes 
place between the flows of the 1st and the 2nd media. The result is that the temperature of the me-
dium θ2out at the outlet from the channel 2 approaches the temperature θ1in of the initial medium, 
and θ1out of the 1st medium discharged from the channel 1 approaches the temperature θ2in of the 
medium supplied to the inlet of the channel 2. The proposed heat transfer of the flows through a 
convectively permeable surface is much more intensive than through a nonpermeable wall. 
 
The mathematical model 
Equations for continuous incompressible physically heterogeneous Newton media are used to quan-
titatively describe the processes of heat transfer in dispersed flows. This description may be used 
for finely dispersed systems with a moderate volume fraction (up to 0.25) of the solid dispersed 
phase. The local velocities of the solid and the fluid phases may be assumed here to be roughly 
equal, especially when the solid and the fluid phases only slightly differ in their densities. We also 
believe that within the heat exchanger, the transfer of heat between the solid and the fluid phases, 
the molecular heat conductivity, and the radiant heat transfer are negligible compared with the con-
vective heat transfer in the flows. This has been observed at Bi>>1 and Pe>>1. Accounting for the 
assumptions made, the set of equations of incompressibility, suspension flow, mass balance for the 
fluid phase and convective heat transfer in the fluid-phase flow can be written as follows: 
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where w, ρD, and ε are the velocity, the density, and the porosity of the dispersed media, respec-
tively; V and A are the arbitrary volume and the enclosed surface confining it, respectively; σ is the 
frictional stress tensor; p is the pressure. We assume that the fluid phase viscosity µF, the specific 
heat, and the density ρF do not depend on θ. In addition, the hydrodynamic relaxation time in going 
over from one time step to another is negligible compared with ts. 
 

Fig. 1. Schematic diagram of a valve-type pul-
sating-flow heat exchanger. 

Fig. 2. Curves showing εst(X) (1,2), U1(X) dur-
ing the 1st and 2nd time steps (3,4 and 5,6, re-
spectively), and Θ2out(Ho) (7, 8) at different 
values of Re0: 1,3,5,7 – 1000; 2,4,6,8 – 10000. 

Fig. 3. Curves showing εst(X) (1,2), U1(X) dur-
ing the 1st and 2nd time steps (3,4 and 5,6, re-
spectively), and Θ2out(Ho) (7,8) at different 
values of L/deq: 1,3,5,7 – 100; 2,4,6,8 – 500. 

Fig. 4. Curves showing εst(X) (1,2,9), U1(X) for 
the 1st and 2nd time steps (3,4 and 5,6, respec-
tively), and Θ2out(Ho) (7,8) at different values 
of εin: 1,3,5,7 – 0.99; 4,6,8,9 – 0.95; 2 – 0.97. 

Fig. 5. Curves showing εst(X) (1,2), U1(X) for 
the 1st and 2nd time steps (3,4 and 5,6, respec-
tively), and Θ2out(Ho) (7,8,9) at different values 
of Refl: 2,3,5,7 – 108; 1,4,6,8 – 106; 9 – 107. 

 
The eqs (1) can be applied for the suspension flow in the channel3. Axis x is directed along the 
channel. Surface s formed by two sectional areas S of the channel and the side surface between 
them is selected. Integration is performed in (1) and projections on the x axis are taken. The equa-
tions are subdivided into distances dx between the sectional areas, and dx tends to zero. The layer of 
deposits on the wall is assumed to be thin compared with the equivalent diameter deq of the channel; 
therefore, S=const. This is true for suspensions having a low solid-phase content or for a short time 
step. We assume that wx=0 on the channel walls; p, θ and ε are constant with respect to S. The latter 



assumption is partly justified by the fact that alternating cross flows are formed in the heat ex-
changer. We may consider two adjacent channels separated by a permeable wall4,5. Equations (1) 
are written for each channel and we consider that the fluid transfer that takes place is the result of 
the pressure difference in the channels. When going over in (1) to dimensionless variables and us-
ing the coefficients of friction ξ and the flow of momentum β, we obtain3,4 
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where the subscripts i and j indicates the channel number, X=x/L, U=u/u0, u is the mean of wx with 
respect to S; u0=u(0), eu=u/|u|; Θ(X,Ho)=[θ(x,t)–θ2in]/(θ1in–θ2in); Euij(X)=[pi(x)–pj(x)]/(ρFu0

2); 
Ho=tu0/L; ρ=ρD/ρF; Ref=Sr0δw/πv, r0 is the resistivity of the partition, δw is wall thickness, πv is the 
permeable part of the perimeter of the channel section; Re0=u0deqρF/µF. When Euij>0, Θij=Θi, and 
when Euij<0, Θij=Θj. The boundary-value problem for the heat transfer of flows is determined by 
setting the boundary conditions and the initial conditions. 
 
Numerical solutions 
Square-section adjacent channels having equal sectional areas were calculated. The wall separating 
the adjacent channels was permeable for the fluid phase and deq1=deq2, S1=S2. The rate of input of 
the flows to the first and second channels was the same: the characteristics of these flows are as fol-
lows: ρF1=ρF2, µF1=µF2, ε1=1, ε2=ε, ρD2=ερF+(1–ε)ρS, µ2=0.59µF(ε–0.23)–2, where ρS is the solid–
phase density of the suspension. During the first time step, the effective dimensionless filtration re-
sistance Ref1 is equal to the partition resistance. During the second time step, Ref2 is equal to the sum 
of the resistances of the partition and the deposit. The effective resistance of the deposit is assumed 
to be equal in the calculations with respect to X. Hence, we may take Ref2 to be independent of the 
coordinates. The following equations were used for the countercurrent pi-network: U1(0)=–U2(0)=1, 
U1(1)=U2(1)=0, Θ1(0,Ho)=1 are the boundary conditions for the first time steps; U1(0)=U2(0)=0, 
U1(1)=–U2(1)=1, Θ2(1,Ho)=0, ε(1,Ho)=εin are the boundary conditions for the the second time 
steps; Θ1(X,0)=1, Θ2(X,0)=0, ε(X,0)=εin are the initial conditions. In the calculations made using (2) 
for similar square-section channels with boundary conditions for any of the time steps we have 
U1(X)=–U2(X). In view of this, the hydrodynamic part of (2) was solved by an iterative method with 
respect to Ui, Euij. The found functions Ui, Euij were used in the temperature and porosity calcula-
tions from (2). Figs 2–5 show the functions εst(X), U1(X) and Θ2out(Ho) at Re0=5000, L/deq=500, 
εin=0.97, Sr=tsu0/L=0.05, Refl=106, Ref2/Refl=1.5, ∆w=δw/deq=0.01, ρS/ρF=1. Here, εst is the mean po-
rosity during the first and the second time steps under steady-state operating conditions. The results 
obtained show that Θ2out(Ho) grows with an increase in L/deq, Re0, and Sr as well as with a decrease 
in εin, ∆w, and Ref1. The fact is that the greater the gradient dEu/dX, the higher is the steady-state 
value Θ2out(Ho). The data calculated on the model predict the highest values of dEu/dX for large 
numbers of Re0, L/deq and small values of εin and Ref1. A reduction in the porosity was noted in the 
middle part of the channel under all the considered operating conditions. In this case the degree of 
thickening of the suspension grows with dEu/dX. 
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