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Abstract 

We study the dependence of the reflectance spectra of regolith-like surfaces on the phase 
angle. A computer model based on the ray optics approximation is used. Our calculations 
reveal a strong non-monotonous dependence of the spectral slopes on the phase angle. 
Changing observation geometry also influences the depth of the absorption bands. We 
also calculate the phase angle distribution of the average path lengths <L> that rays pass 
through in the medium between the points of entrance and emergence. 

 

1 Introduction 
Progress in the remote sensing of planets and their satellites requires better understanding of light 
scattering by their regoliths. In particular, interpretation of the reflectance spectroscopy data can provide 
information about chemical and mineral properties of planetary surfaces. There are unresolved questions 
that should be considered to make this interpretation more accurate. For instance, it is important to 
estimate contributions of single particles and multiple scattering between particles at different phase 
angles. Important problems include transforming photometric data to the same illumination/observation 
geometry of illumination and accounting for the polarimetric effect on spectra.  

During photometric observations of a planet with a spacecraft, the illumination and observation 
conditions change. The principal parameter for characterizing the conditions is the phase angle α. The 
continuum slope and parameters of the absorption bands can be different for the same portion of a 
planetary surface, if spectra are taken under different conditions. Examples are spectrophotometric 
measurements of the Moon, asteroids Eros in situ [1] and Itokawa [2]. Although laboratory experiments 
have been coupled with regolith structure models [3,4], measurements of lunar samples [5], and 
telescopic observations of the Moon [6], the solution of the problem is not complete. The interpretation of 
existing space mission data as well as planning future projects warrant more detailed analyses of the role 
of photometric geometry in the formation of the reflectance spectra. 

We here use light scattering computer simulations to study the phase angle and polarimetric effects on 
lunar spectra. To simulate light scattering in particulate media we use a ray tracing model [7, 8]. 

 

2 Computer experiment description 
A detailed description of the ray-tracing model used in this study can be found in [7,8]. To generate 
random particles with irregular shape we use an auxiliary 3-D random Gaussian field (RGF) [7]. The 
model of the particulate medium is characterized with the following parameters: volume fraction of 
particles ρ (packing density), the complex refractive index of the material (m = n + ik), and the average 
particle size d. In our samples the sizes of particles are almost the same, varying from 25 to 1500 µm. The 
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Figure 1: Spectral dependences of reflectance 
and normalized reflectance at different phase 
angles for a medium composed of particles d 

= 50 µm. 
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Figure 2: Same as Figure 1 for d = 250 µm. 
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packing density of particles in all experiments equals to ρ = 0.1. Natural powders usually are denser and 
our algorithm allows packing up to ρ = 0.4. However, lower density significantly simplifies simulations 
and, in general, the parameter ρ plays a secondary role in spectral reflectance (e.g., [9]).  

In our ray tracing calculations we used 106 – 107 rays. Each ray is traced from facet to facet until it 
leaves the particulate surface after a sequence of interactions with the particulate medium. At non-zero 
absorption each ray propagated inside a particle can be absorbed on the way between two facets with 
probability exp(-τ), where τ = 4πk(λ)l/λ, l is the path length between facets, and λ is the wavelength. For 
k(λ) we used an average dependence for lunar mare material obtained from spectral observations of the 
Moon [9]. The real part n of the complex refractive index is considered as a constant, we use n = 1.6.  

In order to determine angular scattering characteristics, the phase angle range is divided into a number 
of angular bins. The number of rays normalized by the solid angle of a given bin is the intensity of 
scattered light at the bin. The reflectance of a particulate surface at a given phase angle is defined as a 
ratio of the bin intensities corresponding to arbitrary k and k = 0. This simulates comparison with a 
Lambertian surface. Calculation of reflectance for a set of wavelengths at given photometric geometry 
provides a spectrum. We made calculations for a fixed incidence angle i = 70° and changing angle of 
emergence e. Phase angle α varies within 0 – 160°. Scattered intensity is collected in the narrow sector 
containing a plane perpendicular to the average surface. 
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3 Results and discussion 
Figures 1 and 2 show (a) normalized and (b) absolute reflectance spectra for media consisting of particles 
with whose average size is 50 and 250 µm measured at λ = 0.7 µm. At first, we note that the surface 
reflectance becomes lower as particle size increases. This is a widely known effect. The slope of the 
spectra changes with the phase angle α in all plots. It can be either increasing or decreasing depending on 
the size of the particles. For a size of 50 µm in the range of phase angles ≈ 0 – 60° the slope increases. 
This can be attributed to the so called “phase reddening” that is observed for natural surfaces, the albedo 
of which is higher at larger wavelengths. This was investigated in laboratory experiments (e.g., [3-5, 10]), 
but has not been adequately studied theoretically before. For particles with sizes larger than ≈ 200 µm the 
spectral slope decreases monotonously.  

The changing illumination/observation geometry also influences the depth of the absorption bands. To 
illustrate this we plot the spectra divided by the continuum in the wavelength range near the 1 µm 
absorption feature in Figure 3. We approximated the continuum as a linear function between the band 
wings. It is seen that beginning from approximately α = 60° the band quickly becomes weaker, and in the 
range 10° – 120° its depth decreases by a factor of two. 

Ray-tracing allows decomposition of the reflected flux into single-particle and multiple-particle 
scattering components. Our calculations show that for the multiple-scattering component, the spectral 
slopes are much larger than those for the single-particle-scattering component. The phase dependence of 
the slopes is monotonous in the case of single-particle scattering and has non-monotonous behavior for 
the multiple-scattering component. 

An explanation can be suggested for the observed behavior of the slope and absorption band. We may 
consider the total ray path length L in a particulate medium between the points of entrance and emergence 
from the particulate surface. The intensity of a transmitted ray is proportional to exp(-4πk(λ)L / λ). The 
value of L is a function of the phase angle α. These values are different for different orders of scattering. 
In Figure 4 we show the calculated distribution of <L(α)>. As one can see, the average ray path length 
increases in the range 0 – 80°, which corresponds to the increasing spectral slope, reaches a maximum 
and then decreases at large α.  

Figure 3: Surface reflectance divided by 
continuum near the 1 µm absorption feature at 
different phase angles. The size of constituent 
particles is d = 50 µm. 
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Figure 4: Phase-angle distribution of the 
average path lengths <L> that rays pass through 
between the entrance and emergence points of 
the particulate medium. 
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3 Conclusions 
From the results of our ray-tracing simulations we can conclude the following: 

1. The results reveal a strong dependence of the spectral slope on the phase angle. It can be either 
increasing or decreasing depending on the size of particles. The illumination/observation geometry can 
also influence the depth of the 1 µm absorption band. In the range 10° – 120° its depth decreases by a 
factor of two.  

2. Single and multiple scattering components both appear to be important and play a significant role in 
the formation of the reflectance spectra and its behavior with phase-angle change. Multiple light 
scattering is responsible for the non-monotonous phase dependence of the spectral slope.  
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