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Abstract 

Total aerosol scattering and backscattering atmospheric values are typically obtained with 
an integrating nephelometer.  Due to design limitations, measurements usually do not 
cover the full (0º-180º) angular range, and correction factors are necessary.  The effect of 
angle cutoff is examined for a range of particle size distributions and refractive indices.  
Scattering data for sub-micron particles can be corrected by the use of a modified 
Anderson approximation, while data for larger particle distributions can be approximated 
by a function of the effective size parameter.  Such approximation will help more 
accurate corrections for angle range. 

1 Introduction 
In order to determine the influence of atmospheric aerosols on climate, visibility and photochemistry, 
several key aerosol properties are required.  These include the aerosol light extinction, single scattering 
albedo, backscattering fraction and asymmetry parameter.  Integrating nephelometers are well suited for 
this kind of measurements., but only on the condition that operation procedures are followed to minimize 
practical limitations.  Such procedures include accurate calibration and consistent sampling practice, as  
well as corrections for nonlambertian and truncation errors. 
 

In this paper, the influence of limited angular range measurement (7º-170º) on scattering and 
backscattering values is analyzed.  The need for a correction factor to account for such truncation has 
been studied [1], but only a limited set of refractive indices and particle size distributions (PSD)  was 
considered, and nonsphericity effrects were neglected.  An alternative approach, based on the assumption 
that the diffraction forward-scattering peak is the same for spherical and nonspherical particles of the 
same projected area, combines experimental measurements in the 5º-173º angular range with a Lorenz-
Mie calculations of the forward scattering (0º-5º) peak.  The resulting phase function and that determined 
experimentally yield similar values for the asymmetry parameter [2]. 

 
  The purpose of the present work is to provide a more complete set of correction factors for scattering 

measurements on particle size distributions of both spheres and spheroids. 
 

2 Theory 
Light scattering values (extinction, scattering, backscattering coefficients) were calculated at five 
different refractive indices.  Mie theory was used for spheres, and T-matrix was used for randomly 
oriented prolate and oblate spheroids.  The numerical angle integration needed to calculate the correction 
factors was done by substraction of the forward (0º-7º) and the backward (170º-180º) contributions from 
the full integrals, e.g.: 
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for the scattering cross section.  Results were then size-averaged assuming a power-law distribution: 
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where x stands for the equivalent-volume size parameter in the case of spheroids.  A correction 

ratio Fs=Csca/Csca* was adopted as a measure of the effect of angular range limitation.  Instead of using 
integration limits (x1,x2),  PSDs are represented by the effective size parameter xeff and the effective 
variance <eff, as they have been found to best characterize any plausible PSD [3]: 
 

∫
∫

∫
∫ −

==
2

1

2

1

2

1

2

1

)(

)()(

)(

)(

22

22

2

3

x

xeff

x

x eff

effx

x

x

x
eff

dxxpxx

dxxpxxx

dxxpx

dxxpx
x ν     (3) 

 
The maximum xeff, <eff values for spherical PSDs were chosen as 100 and 10, respectively.  Large as 

they might seem, they are sometimes found airborne, for instance as the combustion products of 
powdered coal in a power plant,  or in the aftermath of large volcanic eruptions [4].  For the case of 
nonspherical scatterers, computer limitations impose a maximum equivalent-sphere-volume size 
parameter restriction of about 61-62, thus limiting the range of effective value parameters.  In all cases, 
light scattering parametere were calculated to a minumum accuracy of 10-5. 

 

2 Results 
Correction factors for scattering Fs have been compared to the Angstrom exponent over the 81 to 82 range, 
defined as follows: 
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(for the present work, 81=450 nm, 82=700 nm).  The near-forward (0-7º) scattering is quite insensitive 

to shape effects for moderately wide PSDs, so the dependence of nonsphericity on the correction factor 
can be expected to be small.  This effect has been observed in our results.  For all but the narrowest size 
distributions, Fs values for equivalent-volume-size spheroidal particle distributions are identical to those 
for spheres to within 1-2%.    This result has been confirmed for all five refractive index values, at sizes 
for which T-matrix calculations converged, and for <eff∃0.2.  This supports the view that particle 
populations of interest can be regarded as spheres as far as scattering correction factors is concerned. 
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The correction factor Fs can be partially approximated in the form Fs=a+b∀ (Anderson 
approximation), as Fig 1 shows (∀>0.5 zone).  The validity of this approximation depends on both <eff 
and m, and covers only the sub-micrometer size range, but the approximation itself is <eff-independent and 
depends on the value of the refractive index alone.  For the smallest size distributions, the correction 
factor can be better approximated by the  Rayleigh-limit value 1.01717. 

 
For lower ∀ values, (higher effective size parameters), an Anderson-like approximation is unworkable.  

The reasons are clear from Fig. 1.  First, the functions become multivalued.  Second, even in the case of 
the widest PSDs (where the curve can be represented  as another  lineal function),  such a fitting would 
have a large slope, so a small uncertainty in the value of ∀ could results in large Fs errors.  In those cases, 
the monotonic behavior of the Fs -xeff curve allows for an approximation in the form Fs =a+bLn(xeff) or Fs 
=c+d*xeff, the range of validity depending on the PSD and m value. 

 
The correction factor for backscattering Fb is not monotonic and cannot be easily represented by a 

lineal function of either xeff or Ln(xeff), but it is in general a small amount.  For nonspherical scatterers, it 
has values in a small range, Fb =1.01-1.02 for nonspherical particles, as the example of Fig. 2 shows.  
Only for the smallest PSDs (xeff<1) is a higher correction factor needed, as it slowly increases towards the 
Rayleigh limit 1.02314.  Spherical scatterers show a larger Fb range (except the high-absorbing case, 
m=1.6+i0.6).  This result suggests that a correction based on Mie theory yields worse results than not 
correcting at all.  Only when a natural particle population can be regarded as spherical should Mie-based 
corrections be considered. 

 
Figure 1: Scattering correction factor   Figure 2: Backscattering correction factor 
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