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Abstract 

We compare the discrete dipole approximation (DDA) and the finite difference time 
domain (FDTD) method for simulating light scattering of spheres in a range of size 
parameters x up to 80 and refractive indices m up to 2. Using parallel implementations of 
both methods, we require them to reach a certain accuracy of scattering quantities. We 
show that relative performance sharply depends on m with boundary value of 1.4. DDA is 
faster for smaller m, while FDTD – for larger. 

1 Introduction 
DDA [1] and FDTD [2] are two of the most popular methods to simulate light scattering of arbitrarily 
shaped inhomogeneous particles. These methods have a very similar region of applicability; however, 
they are rarely used together. In a few papers either one method is used to validate the other or they are 
compared for a few scatterers [3]. We perform a new comparison, which in two respects is more extended 
than the previous studies. First, we cover a large range of x and m, which includes, e.g., almost the whole 
range of biological cells (x up to 80). Second, we pre-set the accuracy to be reached by both methods, 
which makes the performance results more informative. 

2 Methods 
As a numerical implementation of DDA we have used the ADDA computer code [4] v.0.76, which is 
capable of running on a cluster of computers (parallelizing a single DDA computation), allowing 
simulating light scattering by scatterers much larger than a wavelength. In this paper we use the default 
ADDA settings for dipole polarizability and iterative method (lattice dispersion relation and quasi 
minimal residual method respectively). The convergence criterion of the iterative solver (required relative 
residual norm) was set to 10–3, which is larger than the default value but is enough for the accuracy 
required in this study (as shown by results). 

The implementation used for FDTD was developed in the Biomedical Laser Laboratory at East 
Carolina University [5], based on the methods described by Yang and Liou [2] with numerical dispersion 
correction [6]. The implementation is written in standard Fortran90 and uses the MPI standard for 
communications, allowing it to run on a variety of platforms. The incident field used was an approximate 
Gaussian pulse with an average wavelength equal to the wavelength of interest. Berringer’s perfectly 
matching layer (PML) boundary condition was used to terminate the lattice. To determine the 
convergence, multiple simulations are carried out, each simulating a time period longer than the previous. 
The time periods are in increments of the time it takes the incident pulse to travel once across the 
scattering particle. When the difference in results for two simulations is negligible, or when the 
differences start to oscillate, the result is said to have converged. 

We simulate scattering by spheres with different x and m = m′ + im″, m″ is fixed at 1.5×10–5. For each 
sphere we calculated the extinction cross section Qext, asymmetry parameter g, and Mueller matrix in one 
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scattering plane (polar angle θ changes from 0° to 180° in steps of 0.25°). From the whole Mueller matrix 
we analyze only the S11 element and the linear polarization 2112 SSP −= . The spherical symmetry of the 
problem is used to calculate the Mueller matrix using the result for only one incident polarization [4]. 
This accelerates the simulation almost twice compared to the general shapes, both for DDA and FDTD. In 
this study we fix the accuracy required by both methods. We take the crudest discretization that satisfies 
both of the following: the relative error (RE) of Qext less than 1%, and the root mean square (RMS) RE of 
S11 less than 25%. All simulations were performed on the Lemieux cluster using 16 nodes (each has 4 
Alpha EV6.8 1 GHz processors and 4 GB RAM, http://www.psc.edu/machines/tcs/). 

3 Results and discussion 
Results of the performance comparison of DDA and FDTD are shown in Table 1. The total computational 
time describes overall performance. It is determined by two factors: the number of cells in the 
computational grid and the number of iterations or time steps. The former depends on x and dpl (number 
of grid cells per wavelength) and determines the memory consumption. Values of dpl can not be directly 
compared between both methods because the typical values for DDA [1] are twice as small as for FDTD 
[2]. The same applies to the iteration count in an even greater extent. For some problems one of the 
methods failed to reach the prescribed accuracy for the given hardware. Results of these simulations are 
shown in parenthesis. 

Table 1. Performance results of DDA vs. FDTD for spheres with different x and m′.a 
Time, s dplb Used RAM, GB Iterationsc 

m′ 
x 

DDA FDTD DDA FDTD DDA FDTD DDA FDTD 
10 1.1 0.6 15 12 0.15 0.02 2 275 
20 11 4.1 20 14 1.4 0.13 4 509 
30 24 17 17 13 2.9 0.28 4 651 
40 78 384 18 22 7.1 2.3 5 1398 
60 453 7026 20 32 30 20 7 4004 

1.02 

80 691 (40580) 16 (32) 40 (47) 9 (5239) 
10 0.7 2.1 10 18 0.07 0.06 6 453 
20 1.9 25 10 19 0.22 0.30 12 1005 
30 8.7 207 10 19 0.79 0.84 18 2531 
40 19 388 10 20 1.4 2.1 25 1928 
60 31 1196 6.7 18 1.4 4.7 49 2509 

1.08 

80 129 12215 6.3 22 2.9 18.7 84 4009 
10 0.9 3.2 10 18 0.07 0.07 20 671 
20 3.2 58 7.5 20 0.15 0.44 57 1589 
30 8.7 645 6.7 24 0.22 2.09 146 3321 
40 106 740 7.5 18 0.79 2.09 384 3837 

1.2 

60 1832 35998 8.4 25 2.9 15.9 1404 13762 
10 4 2.5 15 10 0.15 0.03 78 1047 
20 896 3203 25 37 2.9 3.4 687 10333 
30 7256 3791 17 23 2.9 2.8 5671 11013 

1.4 

40 10517 (47410) 18 (32) 7.1 (15.7) 2752 (21580) 
10 185 5.5 25 8 0.61 0.03 900 2323 
20 22030 998 35 18 7.1 0.82 5814 13101 

1.7 

30 (185170) 47293 (37) 30 (25) 10 (12005) 39751 
10 1261 32 40 11 1.4 0.07 2468 7481 2 
20 (252370) 6416 (60) 20 (30) 1.7 (14067) 30693 

a Parentheses indicate that computational method failed to achieve required accuracy for this x and m′. 
b Number of dipoles or grid cells per incident wavelength. 
c Number of the iterations and time steps during time marching for DDA and FDTD respectively.
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Naturally, both methods require larger computational time for larger x just because the number of grid 
cells scale cubically with x, if dpl is kept constant. Apart from that, the behavior of the methods is quite 
different. Dpl required by DDA to reach the prescribed accuracy do not systematically depend on x, 
except for m′ = 1.7 and 2. However, dpl does depend on m′ – it increases both when m′ increases over 1.4 
and approaches the unity. The latter is partly artificial because S11(θ) for soft spheres has very sharp 
maxima, the position of which depends on the exact shape of the particle. Using the methodology 
described elsewhere [7] we determined that shape errors constitute 90% of RMSRE of S11 for m′ = 1.02, 
x = 20, and dpl = 10 (data not shown). The number of iterations for DDA is relatively small and only 
moderately increases with x for m′ = 1.02 and 1.08. However, for larger m′ it rapidly increases both with 
m′ and x. For m′ = 1.7 and 2 this combines with increasing dpl leading to the sharp increase in 
computational time.  

The behavior of dpl for FDTD is oscillating on the whole range of x and m′ studied. On the contrary, 
the number of time steps increase systematically with both x and m′, which is expected. The dependences 
of the FDTD performance on x and m′ are less interdependent than that of DDA. Comparing the overall 
performance of two methods, one can see that for small m′ and large x DDA is an order of magnitude 
faster than FDTD, and for large m′ vice versa. The boundary value of m′ is about 1.4, for which both 
methods are comparable. They are also comparable for small values of both m′ and x. Memory 
requirements of the two methods are generally similar. However, they naturally correlate with 
computational time – in most cases the faster method is also less memory consuming. 

Table 2. Same as Table 1 but for accuracy results. 
RE(Qext) RMSRE(S11) RE(g) RMSE(P) 

m′ 
x 

DDA FDTD DDA FDTD DDA FDTD DDA FDTD 
10 2.5×10-3 4.3×10-3 0.20 0.17 1.6×10-4 3.6×10-4 0.039 0.043 
20 1.4×10-4 9.3×10-4 0.17 0.22 1.6×10-5 6.9×10-5 0.088 0.095 
30 5.2×10-5 7.9×10-3 0.13 0.22 1.5×10-5 5.3×10-5 0.037 0.10 
40 8×10-6 3.3×10-3 0.19 0.21 4×10-6 1.6×10-5 0.064 0.074 
60 1.6×10-4 5.9×10-3 0.25 0.20 1×10-6 4×10-6 0.071 0.048 

1.02 

80 1.2×10-4 (4.3×10-3) 0.25 (0.33) 3×10-6 (2×10-6) 0.074 (0.12) 
10 2.5×10-4 5.5×10-3 0.15 0.064 6.4×10-5 1.2×10-4 0.074 0.024 
20 5.8×10-5 1.0×10-2 0.17 0.063 3.6×10-4 5.2×10-5 0.097 0.061 
30 3.8×10-4 9.3×10-3 0.10 0.054 1.3×10-4 6×10-6 0.062 0.033 
40 2.8×10-4 9.5×10-3 0.083 0.053 5.1×10-5 8.2×10-5 0.11 0.045 
60 2.2×10-3 8.3×10-3 0.16 0.072 2.7×10-4 4.7×10-4 0.14 0.062 

1.08 

80 3.8×10-3 8.7×10-3 0.13 0.071 9.6×10-5 1.1×10-3 0.13 0.054 
10 7.1×10-4 7.6×10-3 0.073 0.024 6.2×10-4 3.6×10-4 0.059 0.022 
20 5.4×10-3 9.3×10-3 0.13 0.037 3.3×10-4 3.4×10-3 0.11 0.029 
30 2.5×10-3 7.8×10-3 0.16 0.075 3.4×10-4 1.4×10-3 0.14 0.069 
40 3.9×10-3 9.1×10-3 0.19 0.25 1.2×10-3 1.0×10-2 0.15 0.23 

1.2 

60 2.3×10-3 6.0×10-3 0.13 0.25 1.2×10-3 1.3×10-3 0.14 0.23 
10 7.0×10-3 8.9×10-3 0.13 0.14 8.2×10-3 4.6×10-2 0.059 0.093 
20 9.7×10-3 9.8×10-3 0.23 0.17 1.3×10-2 2.7×10-2 0.095 0.15 
30 7.4×10-3 8.2×10-3 0.24 0.19 5.6×10-3 4.6×10-3 0.24 0.19 

1.4 

40 7.1×10-3 (1.5×10-2) 0.15 (0.24) 7.3×10-5 (2.7×10-3) 0.13 (0.097) 
10 5.2×10-4 8.0×10-3 0.12 0.22 3.4×10-2 9.6×10-2 0.097 0.13 
20 1.0×10-2 8.0×10-3 0.12 0.24 1.2×10-2 1.8×10-2 0.086 0.21 

1.7 

30 (2.0×10-2) 1.1×10-2 (0.14) 0.12 (1.5×10-2) 1.0×10-2 (0.12) 0.095 
10 4.7×10-3 8.3×10-3 0.16 0.16 5.1×10-3 2.3×10-2 0.11 0.17 2 
20 (2.6×10-2) 8.3×10-3 (0.086) 0.14 (5.0×10-3) 3.1×10-2 (0.098) 0.11 
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Accuracy results for several scattering quantities are shown in Table 2. For 4.1≥′m  errors of both Qext 
and S11 are close to the required values (0.01 and 0.25 respectively) for both DDA and FDTD. However, 
for smaller m′ DDA has relatively small errors of Qext while FDTD has smaller errors of S11. In other 
words, performance of DDA is limited by S11 (because of the shape errors as discussed above), while 
performance of FDTD is limited by Qext. DDA results in several times smaller errors of g, which is 
correlated with smaller errors of Qext, and FDTD – in smaller errors of P. We can, therefore, conclude that 
DDA is generally more accurate for integral scattering quantities while FDTD – for angle-resolved ones. 
However, that only means that general interrelation between DDA and FDTD as a function of m′ may 
slightly change depending on the certain scattering quantities that are calculated. 

4 Conclusion 
A systematic comparison of DDA and FDTD for a range of x up to 80 and m′ up to 2, using state-of-the-
art parallel implementations of both methods, was performed requiring a certain accuracy of the simulated 
scattering quantities. DDA is an order of magnitude faster for 2.1≤′m  and 30>x , while for 7.1≥′m  
FDTD is faster by the same extent. m′ = 1.4 is a boundary value, for which both methods perform 
comparably. Although these conclusions depend slightly on particular scattering quantity and on the 
implementations of both methods, they will not change principally unless a major improvement of one of 
the method is made. For instance, improving iterative solver and/or preconditioning of the DDA would 
improve the DDA performance for larger m. For the FDTD, a “safe” set of PML parameters were chosen; 
fine tuning these parameters could lead to a thinner PML and increase performance especially for the 
larger problem sizes. Also the FDTD code is designed to use memory conservatively; relaxing the 
memory restrictions would allow faster simulation times at the expense of additional memory use. 

The current study is far from being complete, since we do not vary the imaginary part of the refractive 
index, which is known to significantly influence the performance of the methods. This should be a topic 
of a future work. 
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