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NUMERICAL SCHEME 

 
FVM applied to the RTE 
 
The angular discretization associated to the RTE is uniform and the spatial domain of 
interest is divided into four-node tetrahedron elements. All dependent variables are stored 
at the nodes of the mesh, and the equation for each variable is obtained from its 
discretized conservation equation written for a VP control volume surrounding node P. 
The discretized RTE (for a nonscattering gray medium) over VP and a k∆Ω  discrete solid 
angle associated to the Ω  direction gives [1,2]: 
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To solve the set of equations, closure relations are needed between the integration-point 
values k

fiI   and the nodal values of the radiation intensity. 

 
Closure relations 
 
For a temperature and an absorption coefficient constant in the medium, the closure 
relation of exponential type [1] is given by: 
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where uf and if are on the same optical way of kΩ  discrete direction (uf being located 
upstream from if  and ∆Sf is the distance between points if and uf). For a given VP control 
volume, the location of point uf depends on the form of the (P1, P2, P3, P4) tetrahedron 
and the position of point if in relation to node P (as illustrated in figure 1). Thus, 2 cases 
have to be considered: 

- case 1 (figure 1a): when if is located downstream from node P (here equal to node 
P1), if  is projected in a point uf in the plane ∆P1; 

- case 2 (figure 1b): when if  is located upstream from node P (here equal to node P3), if  
is projected in a point uf in the plane ∆P2; 



where ∆P1 and ∆P2 are the planes orthogonal to the kΩ  discrete direction that pass 

respectively by the nodes P1 and P2 . In this work, k
ufI  is approximated (using only one 

node of interpolation) by k
PI
1
 (case 1) or k

PI
2
 (case 2). This scheme is simpler to 

implement. Thereafter, we plan to improve it by projecting the integration points if on one 
of the faces of the tetrahedron. In this way, k

ufI  will be interpolated from the three nodes 

that define one face of the tetrahedron. 

 
(a) if  located downstream from node P  

 
(b) if  located upstream from node P 

Figure 1 : Partial volume associated with node P in a tetrahedron 
 

RESULTS AND DISCUSSION 
 
Two test cases are presented for a nonscattering gray medium with black walls. The first 
test case deals with a unit cubic cavity (figure 2) taken from [3,4]. The temperature of the 
medium is constant and equal to 100K. The temperatures of the walls are cold (equal to 
0K). Our calculations have been carried with 1,332 nodes (mesh 1) and 2,457 nodes 
(mesh 2). (8×4) discrete directions (24 azimuthal directions and 3 polar directions) have 
been used. Figure 3 shows the dimensional incoming radiative heat flux along the 
centerline position (x = 0.5) of the top wall for three values of the absorption coefficient. 
It can be seen that our results are in agreement with results reported in the literature, 
showing the validity of our numerical method in this first test case. The second test case 
(taken from [3,5]) deals with a L-shaped enclosure (figure 4). The temperature of the 
medium is constant and equal to 1,000K. The temperatures of the walls are equal to 
500K. Our calculations have been carried with 848 nodes (mesh 1) and 2,292 nodes 
(mesh 2). The angular grid has been constructed using (6×4) discrete directions. Figure 5 
shows the incoming radiative heat flux along the A-C axis, for three values of the 
absorption coefficient. The results obtained are compared with those reported in the 
literature. We observe a few discrepancies with the reference solutions, our solution 
being closer with the finer space grid. We think that these discrepancies are due to our 
numerical scheme, which currently uses only one interpolation node. 
 



 
 

 

 

 

 

 

 

Figure 2 : Cubic cavity 

 

 

 

 

 

 

 

 

Figure 3 : Dimensional incoming radiative heat flux 
along the centerline of the top wall at  x = 0.5 

 

 

 
 

 

 

 

 

Figure 4 : L- shaped enclosure 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 : Incoming radiative heat flux along A-C axis 
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Exact solution  [4]

Sakami et al. [3]

Kim et al. [4]
FVM mesh 1

FVM mesh 2
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