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NUMERICAL SCHEME
FVM applied tothe RTE

The angular discretization associated to the RTEniform and the spatial domain of
interest is divided into four-node tetrahedron edats. All dependent variables are stored
at the nodes of the mesh, and the equation for ®aciable is obtained from its
discretized conservation equation written fo¥@control volume surrounding nod#
The discretized RTE (for a nonscattering gray medjiaverVp and aAQ* discrete solid
angle associated to tHi®@ direction gives [1,2]:
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To solve the set of equations, closure relatioesn@eded between the integration-point
valueslikf and the nodal values of the radiation intensity.

Closurerelations

For a temperature and an absorption coefficiensteon in the medium, the closure
relation of exponential type [1] is given by:
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whereus andis are on the same optical way & discrete directiony¢ being located
upstream from; andAg is the distance between poimtanduy). For a givervp control
volume, the location of poini; depends on the form of thBi( P,, Ps, P,) tetrahedron
and the position of point in relation to nod® (as illustrated in figure 1). Thus, 2 cases
have to be considered:

- case 1 (figure 1a): whenis located downstream from noée(here equal to node
P,), it is projected in a poink in the planeAP;;

- case 2 (figure 1b): whdn is located upstream from noBghere equal to nodey), i
is projected in a poini; in the planeAPy;



where AP; and AP, are the planes orthogonal to ti¥* discrete direction that pass
respectively by the nodd andP;. In this work, Il'jf is approximated (using only one
node of interpolation) byl §1 (case 1) orIE2 (case 2).This scheme is simpler to

implement. Thereafter, we plan to improve it byjpeting the integration pointson one
of the faces of the tetrahedron. In this w&§, will be interpolated from the three nodes
that define one face of the tetrahedron.

P

(a) i+ located downstream from node P (b) i+ located upstream from node P

Figure 1 : Partial volume associated with n&de a tetrahedron
RESULTSAND DISCUSSION

Two test cases are presented for a nonscatteraygngedium with black walls. The first
test case deals with a unit cubic cavity (figureaken from [3,4]. The temperature of the
medium is constant and equal to 100K. The tempesstaf the walls are cold (equal to
OK). Our calculations have been carried with 1,3®@2les (mesh 1) and 2,457 nodes
(mesh 2). (8x4) discrete directions (24 azimuthadations and 3 polar directions) have
been used. Figure 3 shows the dimensional incomaniiative heat flux along the
centerline position = 0.5) of the top wall for three values of the @psion coefficient.

It can be seen that our results are in agreemetht nesults reported in the literature,
showing the validity of our numerical method instffirst test case. The second test case
(taken from [3,5]) deals with &-shaped enclosure (figure 4). The temperature f th
medium is constant and equal to 1,000K. The tentypeys of the walls are equal to
500K. Our calculations have been carried with 848es (mesh 1) and 2,292 nodes
(mesh 2). The angular grid has been constructet){6x4) discrete directions. Figure 5
shows the incoming radiative heat flux along theCAaxis, for three values of the
absorption coefficient. The results obtained arengared with those reported in the
literature. We observe a few discrepancies with rifference solutions, our solution
being closer with the finer space grid. We thin&ttthese discrepancies are due to our
numerical scheme, which currently uses only onerjpaiation node.



Centerline of the top wall at x = 0.5
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Figure 2 : Cubic cavit
d y Figure 3: Dimensional incoming radiative heat flux

along the centerline of thetop wall at x = 0.5
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Figure4 : L- shaped enclosure X (m)

Figure5 : Incoming radiative heat flux along A-C axis
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