PREPARATION AND PHOTOTHERMAL CHARACTERIZATION OF NANOCOMPOSITES BASED ON HIGH DENSITY POLYETHYLENE FILLED WITH EXPANDED GRAPHITE: PARTICLE SIZE AND SHAPE EFFECTS

Mihai Chirtoc ⁽¹⁾, Nicolas Horny ⁽¹⁾, Ismail Tavman ⁽²⁾, Alpaslan Turgut ⁽²⁾, Iskender Kökey ⁽²⁾ and Mária Omastová ⁽³⁾ ⁽¹⁾Université de Reims Champagne Ardenne URCA, GRESPI, Multiscale Thermophysics Lab., Moulin de la Housse BP 1039, Reims, 51687 France ⁽²⁾Dokuz Eylul University, Mechanical Engineering Department Bornova, Izmir, 35100 Turkey ⁽³⁾Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, 845 41 Slovakia

SUMMARY: This work aimed at thermal transport characterization of high density polyethylene (HDPE) filled with two sizes (5 and 50 μ m) of expanded graphite (EG) particles. Sample platelets were produced by melt mixing followed by compression molding. Thermal conductivity *k* was determined by combining measurements of density, specific heat capacity and thermal diffusivity. For the latter, we used the self-checking, non-contact method of photothermal radiometry (PTR) in back detection configuration. Starting from an effective medium approximation model, we derived a simple linearized expression for the effective *k* of composites with low particle charge. It explains the unusually high experimental *k* values (up to four-fold increase) as the effect the strongly non-spherical EG particles (aspect ratio 1/*p*=110 - 290). Larger particle sizes produce higher *k* enhancement, while the interfacial thermal resistance (*R*_{bd} = 2.1 · 10⁻⁷ m²·K/W) has an opposite effect on *k*. The eventual deviation of experimental *k* from the model at high particle charge is possibly due to limitation of interparticle free space preventing random orientation of high aspect ratio particles.