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Abstract: 

In this work, we present a numerical study to determine a heat source density, homogeneous 
in a domain.  We show how a point source "equivalent" to approach the phenomenon. The 
method is based on a technique of inversion of a convolution integral, and secondly, on a 
direct modeling of the system by finite differences. 

 
Nomenclature: 
 
a: thermal diffusivity, m2.s-1 
 c: heat capacity, J. kg-1.k-1 
eS, eT: root mean square deviation, ° C  
F: final time, s 
h: convection coefficient, W.m-2.K-1 
H (t): impulse responses  

M (t): answers index  
t: time, s 
T: temperature, K 
u (t), y (t): vector  
xc, yc: coordinates of the source, m 

Greek symbols 
Δ: Laplacian operator 
λ: thermal conductivity, W.m-1.k-1 
ρ: density, kg.m-3 
τ: time, s 
Indices 
EPS: equivalent source  
i, j, k, n, m: indices  
 
 
1.  Introduction   

 We deal in this work a problem of identification of a volume heat source in a diffusive 
2D, the source is assumed uniform. We start first by looking for its position is determined by 
its amplitude as a function of time. 

  
To address this problem, we use a direct modeling by finite difference, to store the 

simulated temperatures. The other way round it is based on an inversion of the integral of 
convolution type Beck [1]. In this phase inversion of the system is considered under the 
aspect monoentrée (the source to be identified) multisorties (data from internal and surface 
temperatures). The source density 2D we use to simulate our temperature measurements is 
circular. 
 
1.1.  Inversion method :  
1.1.1.  Integral Convolution 

 
 

                                     
 

Figure 1 : Principe de la représentation externe 
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Knowing the matrix H (t), then it is conventional to write the system's response to any vector 
u (t) in the form of the convolution integral [2].  
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where u (t) is the vector of input dimension (p), y (t) the output vector of dimension (q), H (t) 
the impulse response matrix of dimension (qxp), t is time, t0 the initial time for which y (t0) = 
0. Using in equation (1) the matrix of responses index M (t) it comes: 
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Δ t is the constant time step. By putting t = FΔ t l'instant calculation and t= f Δ t  current time 
integration, a finite difference approximation to the first order derivative of M (t), it comes: 
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To determine the vector u entries F at the moment, we will use equation (3) extended to the 
future time step. Explain this equation by writing it at the time of calculating F: 
 
      y(F) = Δ MF-1 u(1) + Δ MF-2 u(2)+....+ Δ M1 u (F-1)+ Δ M0 u (F)                   (4) 

In this expression u (1 ),... u (F-1) are known, u (F) is unknown. We may combine in a term    
y * (F) any contribution of the moments prior to F in the form: 
 
    y*(F) = ΔMF-1 u(1) + ΔMF-2 u(2)+....+ ΔM1 u (F-1)                                   (5) 
 
Equation (4) daemon: 
        y(F) - y*(F) = ΔM0 u(F                                                                                     (6) 

Or in matrix form:                 Y = M u(F)                                                              (7) 
 

The relationship (7) constitutes a system of q * (R +1) equations with p unknowns. In 
general this system is over determined, because q * (R +1)> p. The exact resolution is not 
possible, by choosing a standard quadratic, it is then the solution of equation (7) in the sense 
of least squares, either:  
 
                                         u(F) = (MT M)-1 MT Y                                                         (8) 
 
The inverse problem is solved at each time step F, taking into account R future time steps, by 
the relation (8). 
 
1.2.  The direct model finished in deference:   

 
The finite difference equations can be established in two ways, either by using the results 
of numerical analysis, or by writing the bilant thermal each node of the network. The 
second method allows a more physical problem [3]. 
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2.  The system studied and its modeling : 

 
In Figure 3 are represented the various elements of the problem:  
 

   Geometry studied is a flat rectangular plate of length 0.2 m and a width of 0.1 m. The 
thermo-    physical characteristics are selected for a building material like plaster. Values [4]: 
-     Thermal conductivity              λ = 1.5 Wm-1.k-1 
-      Density                                       ρ = 2300 kg.m-3     
-      Heat capacity                             c = 800 J.kg-1.k-1   
 

    On all 4 sides of the rectangle, the boundary conditions of the field are Fourier type (h = 
20 W m-2 K-1) in relation to a reference temperature taken as 0 ° C. At the initial moment, 
the whole system is at 0 ° C [4]. 

     The circular source centered at point C: xc = 5 10-2 m, yc 6 = 10-2 m and radius R = 
2.5 10-2 m. 

 To model this system in deference over, you have a mesh of the plate  ΔY = 0005 m 
and Δ X = 0.01 m:   
 
  Let P (t) the power emitted by this source as a function of time (see Figure 4). 



3- Location method (method of removal of the domain): 
 

The idea is based on an iterative method, presented by the following algorithm [4] (see 
Figure 2):  

1) The plate (with dimensions: xI = 0.2 m, yl = 0.1 m) is separated into two (2) A and B 
at its center, by a parallel to Oy.  

2) Two sources fictitious SP-A and SP-B are placed in each of the points A and B, the 
abscissa xa = 3 / 8 xI and xb = 5 / 8 xI and ya = yb = yg = 1 / 2 yl. 

3) Recovery of simulated temperatures. 
4) Calculation of index responses for each source (SP-A and SP-B) on the first step 

(construction of the matrix M of (3). 
5) Calculation of the vector u (1) by the relation (8) on the first step which is:    
                u(1) =  (MT.M)-1 MTY(R). 
    The vector u (1) has two components ua (1) and ub (1) with respect to SP-A and SP-B.  
6)   A center of gravity between SP-A and SP-B will be calculated. 
7)   The part not containing the center of gravity is "disposed" of the algorithm. 
8)   It works in the opposite direction on a parallel to Oy via xg creation of SP-A and  
       SP-B  following xa = xb = xg, where ya = 3 / 8 and yb= 5 / 8 yl. Reversing the x and 
       y and on again in 2 until convergence (Figure 5). 
9)  The final solution, ie the position of the source, is the center of gravity when it almost  
     does not move during the iterations.  

 
Once the source is located on the first step, there is a direct simulation: 

it makes a step on this source over the length of the interval time of study. Replies index, the 
measurement points, are stored (for the construction of the matrix M) is calculated by the 
source value at each time step, from the relationship (8).  
 
3. Result: 

 
The location is therefore searching for a point source "equivalent" (SPE), successive 

iterations can identify the center of gravity G, the position taken by the PES, the "epicenter" 
of the source is located fairly accurately. 

 
In Figure 5, it represents the convergence of the position of G according to the number of 

iterations, you can see how successive calculations of xg and yg tend towards the values xc 
and yc sought. SPE is localized, then we apply the inversion method on the whole time 
horizon. We present in Figure 6, the source value compared with the SPE theoretical curve 
used for the direct model and the quadratic differential on sources eS (W / m). We note that 
levels are not well reproduced despite the best location, the reason that the two sources are not 
similar because here we identify a point source equivalent. 

 
In Figure 7 presents examples of thermogram reconstructed from identification with the 

root mean square deviation and (in ° C), we see a good agreement until the time t = 4000s, 
after this time is a little less and a better fit for the curves of temperatures that are far from the 
source.  
 
4.  Conclusion 
 

In this work, we presented a method of inversion in thermal conduction, to identify a 
volume heat source in a diffusive 2D. This inverse problem has two steps to locate the 
position of this source, then an identification of its amplitude as a function of time. So on the 
heat source density, we notice that we have a good result for the location, whilst the intensity 
of the source volume we have a worse outcome, because we identified a point source is 
equivalent to an approximate solution, but the final solution is still the identification of the 
geometric shape of this source.  
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Figure 2: Principle of localization, elimination of field  
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Figure 3: The test case studied with these conditions
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Figure 5: Convergence of center of gravity 
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Figure 6: Comparison of the circular source of origin and 
the point source equivalent (SPE) 
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