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Accurate prediction of secondary flows and associated heat transfer phenomena in a cascade of 
turbine blades or vanes remains to be a challenging task, despite the great effort made in this area 
for several past decades. In a comprehensive review of secondary flow literature, covering up to 
2000, Langston [2001] has stated also achievements and shortcomings of secondary flow CFD 
predictions at that moment. The present contribution main objective is reveal the progress achieved 
for the last decade. 
 
On the way of getting reliable computational models of secondary flow, data obtained for large 
scale test configurations play a primary role. Test computations of last years [Kalitzin and Iaccarino 
1999, Hermanson et al. 2003, Ivanov et al. 2003, Goriatchev et al. 2004, Sveningsson and Davidson 
2004, Holley et al. 2005, Levchenya et al. 2006, Levchenya and Smirnov 2007, Levchenya et al. 
2009b] were focused mostly on reproducing flow field and heat transfer experimental data obtained 
in the Langston subsonic blade cascade [Langston et al. 1977, Graziani et al. 1980, Holley and 
Langston 2006], in the NASA GRC transonic blade cascade [Giel et al. 1996, 1998], and in the 
Virginia Tech vane cascade [Kang et al. 1999]. Figure 1 illustrates geometry of the blade passages 
and typical computational grids used for CFD analysis.  
 
 
 
 
 
 
 
 
 
 
Figure 1. Geometry and typical computational grids used for numerical simulation of 3D flow and 

heat transfer in test linear cascades: (left) Langston subsonic blade cascade, (mid) NASA GRC 
transonic blade cascade, and (right) Virginia Tech vane cascade  

 
In the region of the endwall, especially near the blade/vane leading edge (LE), the flow field is 
complex due to formation of a horseshoe vortex system that typically consists of a primary horse 
shoe vortex, a counter-rotating secondary vortex, and a tertiary vortex. Figure 2 illustrates such a 
system after post-processing of Reynolds-Averaged Navier-Stokes (RANS) computational data 
obtained by Levchenya and Smirnov [2007] with the SST k-ω turbulence model [Menter 1994] for 
the NACA GRC blade cascade flow.  
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Figure 2. Secondary flow structure in the NASA GRC transonic blade cascade after RANS 

simulation by Levchenya & Smirnov [2007]  
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The underlying physics of horseshoe-vortex flows past wall mounted obstacles is studied 
extensively for various generic junction configurations including wall mounted symmetric airfoils 
and circular cylinders [Devenport and Sympson 1990, Agui and Andrepoulos 1992, Sympson 1990, 
Praisner and Smith 2006, Hada et al. 2008]. Devenport and Sympson [1990] have established that, 
under turbulent flow conditions, the horseshoe vortex dynamics upstream of the wing LE is 
dominated by coherent, low-frequency unsteadiness. Recently, for the symmetric body shown in 
Figure 3, Praisner and Smith [2006a, 2006b] performed simultaneous measurement of instantaneous 
flow field and endwall heat transfer by using Particle Image Velocimetry (PIV) and thermo-chromic 
liquid crystals in a water tunnel. Their data show that the time-mean endwall heat transfer is 
characterized by two bands of high heat transfer. To study the effect of the LE diameter on the 
horseshoe vortex dynamics and the endwall heat transfer in air flow past a symmetric body, Hada et 
al. [2008] used the PIV technique and the naphthalene sublimation method.  
 
In order to resolve coherent, low-frequency unsteadiness of the horseshoe vortex system, Paik et al. 
[2007] employed the Detached Eddy Simulation (DES) approach for the conditions of the 
Devenport & Sympson experiments. Hada et al. [2008] combined their measurements with DES as 
well. Both the works have demonstrated the potential of DES for prediction of correct dynamics of 
the horseshoe vortex system. However, much effort is to be made to achieve a fully satisfactory 
agreement with the measurement data. Regarding the test configurations for turbine blade/vane 
cascades, application of DES or other hybrid RANS/LES approaches is still waiting for its turn.  
 
In the framework of the RANS approach, resolution of the horseshoe vortex system depends both 
on the numerics and the turbulence model used. High-Reynolds-number turbulence models are not 
suitable for accurate secondary flow prediction. For the low-Reynolds-number models, the 
computational experience accumulated has resulted in the conclusion that the k-ω model [Wilcox, 
1993] and various versions of the k-ε model do not provide a possibility of getting a multi-vortex 
structure, even in the case of grid-independent solution. The Menter SST model and the second-
moment closure models are able to reproduce the complex horseshoe vortex system [Apsley and 
Leschziner 2001, Levchenya and Smirnov 2007, Levchenya et al. 2009a]. Results of simulations 
performed with the Durbin v2-f model [Kalitzin and Iaccarino 1999, Hermanson et al. 2003, 
Sveningsson and Davidson 2004] do not allow the reader to make a definite conclusion for the 
matter.  
 
With a fine grid and a proper RANS turbulence model one is able to get a double-peak curve 
representing the Stanton number variations, as illustrated in Figure 3. However, the local minima in 
the St distribution are deeper as compared with the measurements. It seems that just the low-
frequency unsteadiness mentioned is responsible for the St curve “smoothing”.  
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Figure 3. Experimental configuration of Praisner & Smith [2006] and results of RANS simulation 
of the horse shoe vortex system and endwall heat transfer near the airfoil LE [Levchenya et al. 

2009] 
 
Additional limitations of the steady-state RANS modelling are due to low-frequency unsteadiness 
that can develop in the exit part of a blade/vane cascade. This unsteadiness might be the main 
reason of typical disagreement between the experimental and computational results for the 
pitchwise variation of the local Stanton number in cascade exit regions, as well for the pressure 
losses gradients there.  
 
Some issues concerning state-of-the-art CFD-based analysis of non-axisymmetric endwall 
contouring effects on pressure losses and endwall heat transfer are discussed in the full paper as 
well.  
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