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Let s  be a spectral intensity of an emitting opaque heated body at points  in 
directions s . The intensity is supposed to be recorded directly by a pyrometer at known 
wavelengths , , or to be found from measured brightness temperature . The 
intensity and the emissivity s are related in the form  
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where is represented by the Planck formula. Assuming the values s of 
emissivity and the temperature T to be unknown we can consider the relation (1) as the system of 

 equations with m  unknowns. 
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   The similar approach is valid for a system of reradiative isothermal opaque surfaces. Suppose that 
the spectral intensity  of effective radiation at points in directions s is recorded 
in this system. If we wish to find the temperature T  along with unknown values of 
the effective emissivity, we obtain the equations 
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   It is well known that the equations (1), (2) have ambiguous solutions. So, we have to use 
additional assumptions to find both the temperature and the emissivity from (1) (or from (2)). For 
example, we can postulate that the function  (or ) is independent on ε efε λ  ('grey' thermal 
radiation), or depends on  linearly, or is represented by a polynomial of -th order, or has more 
complicated form. The unknown coefficients of these postulated functions should to be identified.  
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   We propose a new numerical algorithm for the identification of temperatures and emissivities 
from (1) or from (2). The input data for the algorithm is a registered spectral distribution of thermal 
radiation intensity, while the output values are the calculated estimate for the temperature and the 
'best' parametric formula for the emissivity chosen from a database of such formulas. The algorithm 
is based on regularized sequential optimization procedures1  with specially calculated initial guesses 
for the temperature and the emissivity as a function of the wavelength.  Each step of the algorithm 
refines the temperature and/or the formula for the emissivity going to more complex dependence 
(generally, nonlinear with respect to the wavelength and/or parameters). The algorithm was 
examined for the 'quasi-real' data generated with the help of experimental normal emissivities for 
tungsten, tantalum, molybdenum, niobium and liquid zirconium as well as for an isothermal 
tungsten cavity. In doing so, we used the well-known experimental emissivities and known 
corresponding temperatures to calculate the values  from (1) (or from (2)). Then we perturbed 
these values by model random errors with  levels near to the experimental ones and used such input 
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data in the algorithm. The trials demonstrated the numerical stability of the algorithm with respect 
to disturbances of the data.  
   The next table illustrates the results of our numerical experiments. Here T0  is given true 
temperature and T is calculated one. The values calc 0TTT calc −=∆  and 0TT∆

δappr

 describe 
correspondingly the absolute and relative errors of the found temperature. The levels of random 
perturbations for the data are characterized by relative mean square errors . The 
value represents the relative mean square error of calculated emissivity, while is the relative 
residual of the equation (1) (or (2)) for the found temperature and emissivity. The references show 
the origin of the experimental emissivities. 
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Table. Calculation results. 
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1 Tungsten  2 1 1976     24 0.012 0.0077 0.1430  
 λ ∈[ . , . ]0 55 0 9  2 1996.6 3.4 0.002 0.0037 0.0187 0.0005 
 T0 =2000 K 3 1997.1 2.9 0.001 0.0000 0.0162  
2  Tantalum  2 1 1996 4 0.002 0.0639 0.0579  
 λ ∈[ . , . ]0 4 12  2 1996 4 0.002 0.0027 0.0260 0.0005 
 T0 =2000 K 3 1996 4 0.002 0.0000 0.0258  
3 Molybdenum  3 1 1996 4.1 0.002 0.5015 6.5078  
 λ ∈[ . , . ]0 4 2 4  2 1996 4 0.002 0.0113 0.0241 0.0005 
 T0 =2000 K 3 1996 4 0.002 0.0000 0.0215  
4 Niobium 4  1 2001 1 0.0005 0.6308 1.4580  
 λ ∈[ . , . ]0 68 501  2 2001 1 0.0005 0.0049 0.0061 0.035 
 T0 =2000 K non       
5 Zirconium 

(liquid)  5
1 2296 39.1 0.017 0.1527 0.1868  

 λ ∈[ . , . ]0 38 0 93  2 2343 7.7 0.003 0.0253 0.0391 0.05 
 T0 =2335 K 3 2339 4.5 0.0019 0.0000 0.0205  
6  Cavity  7,6 1 2078 77.6 0.039 0.0306 0.3224  
 λ ∈[ . , . ]0 55 0 9  2 1999 1.3 0.001 0.0002 0.0070 0.0005 
 T0 =2000 K non       

  
Quasi-real data of  correspond to radiation of a model of cylindrical cavity of infinite length 

with slit at , the tracking surface element being located against the slit . The cavity has the 
temperature T , is manufactured of tungsten, emissivity data are taken from 7 . 
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The analysis of our numerical trials leads to the following conclusions. 
1. The presented algorithm provides in practice a reasonable accuracy for the identification of 

temperatures and emissivities.  



2. The a priori information on the optical properties of the surface material (as a function of 
wavelength and temperature) is of principal significance for the identification. In general, it is 
necessary to perform a mathematical modeling to substantiate the parametric form of the 
emissivities to be found. 

3. In searching the best parametric emissivities, we observed a sharp growth of the error with 
increase of the number of unknown parameters. So, it is reasonable to 'truncate' the number of 
parameters depending on the error levels of experimental data in order to obtain the reliable 
results. 
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4. The database of the parametric models for or incorporated in the algorithm can be easy 
changed or extended depending on the material of the emitting body and/or its surface 
properties.  
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