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INTRODUCTION 
 
 Thermal systems, as heat exchangers or turbomachines, are often subjected to time-variations in 
the thermal boundary conditions (temperature or flux). Research of the evolutions in time of the 
temperature within the boundary-layer is generally conducted by one of the three privileged 
directions: direct numerical computation of the equations, extension of the differential method 
based on Blasius analysis1,2,3, and Pohlhausen’s integral method4,5.  
 Direct numerical computation can be weighty if the momentum and energy equations are strongly 
coupled. The integral method present the inconvenient that it necessitates the knowledge of the 
velocity and temperature polynomial profiles in the boundaries layer. Moreover, both methods give 
the results specific to each physical problem (geometry, fluid, velocity, temperature, boundary 
conditions…).  
 Meanwhile, by an appropriate choice of the dimensionless quantities, the differential method can 
give the similarity solutions for some problems originally different. Thus, the non-dimensional 
results are, in most time, presented according to the dimensionless parameters. Whereas, a come 
back to the dimensional results, expressed in terms of physical parameters, can give some surprises 
and points out some phenomena not evidenced from the non-dimensional results. 
 This paper is an illustration of some discordance between the non-dimensional results and the 
physical ones, obtained from unsteady laminar forced convection. 
 

APPLICATION 
 
 The problem considered here is the transient laminar forced convection from a flat plate (or a 
wedge) subjected to a step change in the surface temperature2. The pressure gradient is chosen to be 
different from zero, since flows with a non-constant velocity along the plate are often encountered 
in practical applications. The velocity field is assumed independent from temperature changes. 
 
 Using the dimensionless quantities: 
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the momentum equation can be reduced to: 
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and the transient energy equation becomes2: 
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Fig. 1 - Gradient of dimensionless temperature for Blasius flow (m = 0) 
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Fig. 2 – Instantaneous convective heat transfer coefficient at different abscissa (m = 0) 
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Fig. 3 – local convective heat transfer coefficient at different time (m = 0) 



 From the numerical resolution of the above equations (by Keller-Box method)3 we obtain the 
dimensionless velocity and temperature, for each value of the pressure gradient parameter, m. 
 
 The local convective heat transfer coefficient for a uniform surface temperature is defined by: 
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 The evolution of the non-dimensional parameter , present in the expression of  
h (x, t

)t,(*'T +− 0
+), is illustrated in figure 1 for Prandtl number Pr = 7. From this evolution one can extract the 

physical evolutions of the convective heat coefficients in time (figure 2) and in space (figure 3).  
 
 The variation in time of the convective heat transfer coefficient at a given location x (figure 2) is 
similar to the variation of  with t)t,(*'T +− 0 +. 
 
 The physical evolutions of the convective heat transfer with the axial coordinate, x, at different 
instants t (figure 3) show behaviour in unsteady state different from which occurs in steady state  
(t = infinite). Indeed, in steady state the convective heat coefficient presents a monotonous decrease 
with x from an infinite value to an asymptotic one. However, the transient coefficient h (x, t) doesn’t 
have a monotonous variation with x. It diminishes near the leading edge of the plate and slowly 
arises in the region at far distance from the entrance. Mathematically, this is due to the presence of 
the space variable, x, in both expressions of h (x, t+) and t+ (see equation (1)). Physically, the 
difference between these two behaviours is due to the fact that the fluid is not heated (if Tp>T∞) in 
steady state on the same distance as in transient state. In steady state, the heat exchange at a location 
(x) occurs between a plate at Tp and a fluid heated from the leading edge of the plate (x = 0) until 
the location (x). So, it has a temperature near the plate close to Tp. On the same location (x), in the 
first instants after the impulsively change of the plate temperature from Tp to T∞, the fluid 
temperature near the plate is not heated from the entrance, so its temperature is close to T∞. Thus, 
the heat flux extracted from the plate, therefore, the convective heat transfer coefficient, is greater in 
the second case than in the first case (since )TT(h pp ∞−=ϕ  and ∞−TTp  is the same in steady 
and unsteady states). 
 
 Other illustrations of the importance of the dimensional representation of results are also given in 
this paper. We show, in particular, the interpretation errors which might be induced by the 
representation of the dimensionless convective heat coefficient and the transient duration as a 
function of the Prandtl number.  
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