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A theoretical analysis of thermal instability driven by buoyancy forces in transient temperature fields is 
conducted in an initially quiescent, horizontal fluid layer heated from below and cooled from above 
with uniform heat flux. Under the principle of the exchange of stabilities, the stability analysis is 
performed on the basis of the propagation theory which adopts the thermal boundary-layer thickness as 
a characteristic length scaling factor and self-similar transformation. The prediction compares quite 
well with existing experimental result.  
 

THEORETICAL ANALYSIS 
 
When an initially quiescent fluid layer confined between two horizontal plates is heated rapidly from 
below and/or cooled rapidly from above, the basic temperature profiles of heat conduction develop with 
time and buoyancy-driven convection can set in at a certain time. In this transient system the critical 
time t  to mark the onset of convective motion becomes an important question. The related instability 
analysis has been conducted by using the frozen-time model

c

=

1, propagation theory2, maximum-
Rayleigh-number criterion3 and amplification theory4. The first two models are based on linear theory 
and yield the critical time as the parameter. The last model requires the initial conditions at the heating 
time t  and the criteria to define manifest convection. 0
 
Mathematical formulation 
 
The problem considered here is a horizontal fluid layer confined between two rigid boundaries separate
d by a distance “ ”, as shown in Fig. 1. The fluid layer is initially motionless at a constant temperature 

. For time , the fluid layer is heated from below and cooled form above with   constant heat flux 
. The schematic diagram of the basic system of pure conduction is shown in Fig. 1. The dimensionle

ss basic temperature  has the scale of ( , where k  denotes the thermal conductivity. Under lin
ear stability theory, the disturbances caused by the onset of thermal convection can be formulated, in di
mensionless form, in terms of the temperature component 
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1θ  and the vertical velocity component  as 1w
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Fig. 1. Schematic diagram of system considered here. 

 
where  and ∇ . The dimensionless velocity comp
onent has the scale of , the vertical distance , and the temperature disturbance the scale of 

, where  denotes the thermal diffusivity, 
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/(gαν ν  the kinematic viscosity, g  the gravity accelera

tion and  the thermal expansivity. Here β ( )( )ανβ= k/dqg wq
4Ra  is the Rayleigh number, ( )2d/tα=τ  t

)he dimensionless time, and  the Prandtl number. The proper boundary conditions are given b
y 
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Our goal is to find the critical time  to mark the onset of convective instability for a given  by usi
ng Eqs. (1)-(3). With the frozen-
time model, the term involving 

cτ qRa

τ∂⋅ /)∂(  is neglected and therefore the system becomes time-
independent, the results are independent of Pr . With the amplification theory the proper initial conditio
ns at τ  and the amplification factor to represent manifest convection are required. However, propag
ation theory is a rather simple, deterministic approach even though it involves the transient effect.  
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The present study will employ propagation theory for the stability analysis. Based on scaling analysis, t
he following amplitude relations can be obtained: 
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where  is the Rayleigh number based on the thermal boundary-

layer thickness  and the wall heat flux , and 
T∆

= RaRa*

T∆ wq ( )2/1τ∝Tδ  is the nondimensional thermal boundary-
layer thickness. In propagation theory, ( )2RaRa τq=*  is assumed to be a constant. From the resulting pe
rturbation equations the self-
similar stability equations2 are obtained and the minimum value of , i.e.,  is obtained numerical
ly. 
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Stability analysis results 
 
The stability criteria for various Pr  values are summarized in Fig. 2. It seems evident that the critical 
Rayleigh number  increases with a decrease in *

cRa Pr  and the Pr -effect becomes pronounced for 
1Pr < . For the high- Pr  case, the long wave mode is preferred. This means that the inertia forces make 

the system more stable and the disturbance be confined within the narrow regions near the boundary. 
 
Ward and Le Blanc5 measured the voltage variation with time in an electrochemical redox system wher
e the Schmidt number , which is equivalent to Sc Pr  in a heat transfer system, is larger than 1,000. For t
his electrochemical system the present -cτ



values are about one sixth of the experimental result oτ , as shown in Fig. 3. Here  represents the char
acteristic time to mark manifest convection. Foster

oτ

t=

6 commented that with correct dimensional relations 
. This means that a fastest growing mode of instabilities, which set in at t , will grow with ti

me until manifest convection is detected at 
cτ≅τ 4o c

co tt 4≅ . A growth period will be required, as illustrated in F
ig. 3. The validity of  requires a further study but this relation is shown even in other transient di
ffusive systems
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           Fig. 2. Effect of  on critical condition.               Fig. 3. Comparison of theoretical results with 
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CONCLUSION 
 
The onset of buoyancy-
driven motion in a horizontal fluid layer heated from below and cooled from above with uniform heat fl
ux has been analyzed analytically by using linear stability theory. The propagation theory and frozen-
time model predict that the onset time of buoyancy driven motion is a function of the Rayleigh number 
and the Prandtl number. It seems that for high  case, the long wave mode is preferred and the inertia 
forces make the system more stable and the disturbance be confined within the narrow region. The pres
ent result shows that the propagation theory predicts the onset time quite well and the inertia term make
s the system more stable. 
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