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The problem of transient free convection in a domain partly filled with porous 
substrate is investigated using the Laplace transformation technique. A porous 
substrate attached to one of the heated walls is considered. The Brinkman-extended 
Darcy model is adopted to describe the hydrodynamics behavior of the porous 
domain. The effect of some parameters, such as thermal conductivity ratios and 
thermal diffusivity ratios, on the temperature and velocity distributions is investigated. 

 
Introduction 

The use of porous substrates to improve convective heat transfer in channels has many 
practical, geophysical, environmental, and technological applications. Examples 
include electronic cooling, chemical and nuclear reactors, heat transfer from hair 
covered skin, porous flat plate collectors, grain and food storage and drying, 
solidification of concentrated alloys, packed bed thermal storage, and fibrous and 
granular insulation where the insulation occupies only part of the space separating the 
heated and cooled walls. The present work considers the transient free convection 
fluid flow problem in a domain partially filled with porous substrates.  
 

Mathematical formulation 
 

Consider an unsteady laminar fully developed free convection flow in a domain 
partly filled with porous material. The fluid is assumed to be Newtonian with uniform 
properties and the porous medium is isotropic and homogeneous. Also, it is assumed 
that both viscous dissipation and internal heat generation are absent. Using 
dimensionless parameters, the equations of motion and energy in both clear and 
porous domains are given as, respectively, 
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with the following initial and boundary conditions: 
 

( ) ( ) 0.0,0,0 21 == YUYU ,           ( ) ( ) 0.0,0,0 21 == YY θθ                                                                              
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( ) ( )r
Y

Ur
Y

U
R ,, 21 τµτ

∂
∂

=
∂
∂ ,            ( ) ( )r

Y
Kr

Y R ,, 21 τ
θ

τ
θ

∂
∂

=
∂
∂  



 2

where the subscript 1 and 2 refer to the clear and porous domains respectively. In Eq. 
(2), aC is an acceleration coefficient tensor, and it depends on the geometry of the 
porous medium. The other parameters appearing in Eqs. (1-3) are defined as follows: 
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Equations (1-2) are solved using Laplace transformation technique. Now with the 
notation that ( ){ } ( )YSWYUL ,, =τ  and ( ){ } ( )YSVYL ,, =τθ , these equations assume 
the following solutions    
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Also, the Laplace transformation of the boundary conditions, yields: 
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The constant 1C to 8C are found after inserting Eqs. (4-7) into the boundary 
conditions. Equations (4-7) are inverted using a computer program based on the 
Riemann-sum approximation. 
                                                                  

Results and discussion 
 

Figure 2 shows the spatial temperature distribution at different thermal diffusivity 
ratios Rα . Here, the porous domain is in direct contact with the heated wall. Porous 
domains of higher thermal diffusivity produce higher Rα  ratios. In this situation the 
porous layer diffuses more heat as its diffusivity increases and this leads to an 
increase in both domain temperatures. This is traced from another point of view by 
plotting the transient temperature distribution as shown in Fig. 3. Figure 4 shows the 
spatial velocity distribution at different thermal diffusivity ratios. Due to its additive 
microscopic frictional drag term (Darcy term), the porous domain has a much lower 
velocity as compared to the clear domain velocity. Porous domains with larger 
thermal diffusivity (or high Rα ) diffuse more heat from the wall to both domains and 
this in turn increases the buoyancy effect, which is the driving force for the flow. This 
leads to an increase in the velocity. Figure 5 shows the spatial temperature distribution 
at different thermal conductivity ratios RK . Here the thermal conductivity ratio RK  
may be increased by decreasing the clear domain thermal conductivity. This in turns 
leads to a reduction in the heat carried from the heated wall to both domains and as a 
result, lower temperatures are attained in this situation.  
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                                              Figure 1:  Schematic diagram of the problem  
                                                                 under consideration.  
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       Figure 2: Spatial temperature distribution at different            Figure 3: Transient temperature distribution at 
                          thermal diffusivity ratios.                                           different thermal diffusivity ratios                                                
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Figure(): Spatial velocity distribution at different               Figure(): Spatial temperature distribution at different    
                   thermal diffusivity ratios.                                         thermal  conductivity ratios. 

 


