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The theme of convection in enclosures filled with saturated porous media is a very popular one in 
the literature. The reason is the abundant applications, such as heat transfer in geothermal energy 
systems, storage of radioactive nuclear waste materials, pollutant dispersion in aquifers1-2. 
 
Various situations were examined in relation with the convection heat transfer in a porous 
medium between two vertical concentric cylinders3-5. For example, a parametric study has been 
performed4 to evaluate mixed convection heat transfer in a porous medium between two vertical 
concentric cylinders for a constant temperature outer and a insulated inner boundary conditions. 
The authors of that paper claim on the fact that their simulation is related to the feasibility to 
extract energy from the liquid magma region located near the earth’s surface. Bau and Torrance6 
analyzed convection in the annulus between vertical coaxial cylinders, and they found the 
preferred mode of convection is asymmetric. Charrier-Mojtabi et al7 presented a numerical and 
experimental study of two-dimensional convection. 
 
A linear stability analysis is performed in the present paper for the free convection between two 
co-axial cylinders filled with a porous medium.  
 

BASIC EQUATIONS 
 

We take a cylindrical polar co-ordinates system ( )zr ,,θ  with the z –axis along the vertical axis of 
the cylinders and put RR =1  and LRR 22 += . In usual notations, the basic equations are: 
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 is the Laplacean and the Boussinesq hypothesis was used: 

( )[ ]mTT −β−ρ=ρ 10 , with mT  a mean temperature defined below.. We eliminate pressure p  from 
Eqs. (2)-(4) to have: 
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The boundary conditions of  Eqs. (1), (3-5) are  



 
 

0== vu , zkTT += 1 , on Rr =  (6a)
0== vu , zkTT += 2 , on LRr 2+=  (6b)

where ( ) 2/21 TTTm += . We introduce the non-dimensional variables: 
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where . The governing equations (1), (3-5) become 
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where ναβ= mLTgKRa /0  is the Rayleigh number and M is a parameter defined as: 
( )mmTUkLM α−= /0

22 . The boundary conditions (6) become 
0== vu , 1−=T , on ar =  (11a)

0== vu , 1=T , on 2+= ar  (11b)
where a = R/L. 
 

UNDISTURBED FIELD 
 
If we take an axisymmetric field ( )rvv =  as the basic field, Eqs. (8)-(10) then become 
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subject to the boundary conditions 
0== vu , 1−=T , on ar =  (14a)

0== vu , 1=T , on 2+= ar  (14b)
These equations give 

0== vu , CTw +=  (15)
where C is a constant and Eq. (13) transforms to 
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If we take x = Mr, then Eq. (16) reduces to 
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subject to 
1−=T  at  x = Ma (18a)

1=T  at ( )2+= aMx  (18b)
These boundary conditions are not sufficient to determine the solution of Eq. (17) uniquely 
because C still remains as a arbitrary constant. In order to obtain a unique solution, we impose an 
aditional condition of zero flux in the z –direction. This condition is actually satisfied in a fluid 
layer of finite depth and we require the same condition in the limit of infinite depth. Then 
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The general solution of Eq. (17) is  

( ) ( )MrBYMrAJCT 00 ++−=    (20)
where A and B are undetermined constants yet. Using (18-19) and some properties of Bessel 
functions the values of the constants A, B and C are readily obtained. 
 

STABILITY ANALYSIS 
 
In order to examine the stability of the steady field 

( )( )rws ,0,0=V , ( )rTTs =  (21)
we superimpose the infinitesimal disturbances: ( )wvu ˆ,ˆ,ˆˆ =V  and T̂ , to obtain  

VVV ˆ+= s , TTT s
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We remark now that the undisturbed fields do not depend on θ and z, so that they can be 
decomposed into the Fourier components 

( ) ( ) ( ) ( ) ( )[ ] ( )[ ]tnzirrrrTwvu ω−θ+γτχψΦ= exp,,,ˆ,ˆ,ˆ,ˆ  (22b)
where γ denotes the wavenumber in the z-direction, n is an integer and ω = ωr + iωi is a complex 
circular frequency, ωr / γ being the phase velocity and ωi is the amplification rate. According as 
ωi is positive zero or negative, the disturbance is amplified, neutral or damped. Substituting (22a-
b) into Eqs. (8) and (10) we have for T0 > 0 
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where ( ) ( )cwirW s −γ= , ( ) ss RaTir γ=Θ  and ir iccc +=γω= /  is the wavespeed.. 
 
We solve now Eqs (23) subject to the boundary conditions 

0=τ=χ=ψ=Φ  at  r = a and r = a + 2 (24)
Eliminating χ from Eqs. (23), we obtain 
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subject to the boundary conditions 
0=τ=ψ=Φ  at  r = a and r = a + 2 (27)

The problem is now to solve the eigenvalue problem consisting of (26) and (27), where c is the 
eigenvalue and a, n, γ, Ra and M are parameters. The neutral curves (characterized by ci = 0, i.e. a 
temporal analysis) are calculated for various values of the parameters a, n, γ, Ra and M. The 
strategy is to minimize the problem with respect to the Rayleigh number for fixed values of a, n, 



 
 
γ and M.  The numerical method used in this study for the stability analysis is the well-known 
compound matrix method. 
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