
 
 

 
THERMAL TRANSIENTS IN PARALLEL FLOW HEAT EXCHANGERS 

 
Abdelfatah Lahzazi, Nicolas Galanis 

Faculté de genie, Université de Sherbrooke 
Sherbrooke QC, Canada J1K 2R1 

 
The control of systems incorporating heat exchangers necessitates an understanding of their 
response to variations of flow rates and/or entering fluid temperatures. Therefore, many analytical1 
and experimental2 studies have dealt with this subject. Most models used to evaluate such transients 
assume that some parameters (the convective heat transfer coefficients, the effectiveness, etc) are 
known and remain constant throughout the transient operation. To avoid this assumption, we 
proceed with a numerical solution of the partial differential conservation equations. Here we 
analyse the response of a parallel flow heat exchanger following a change of one entry temperature.  
 

MATHEMATICAL MODELING AND SOLUTION METHOD 
 
The system under study consists of two coaxial tubes of length L. Their interior and exterior radii 
are R1, R2 for the small tube and R3, R4 for the big one. The outside surface is adiabatic while the 
two fluids, moving in the direction of increasing Z, enter the system with uniform but different 
temperatures Tie and Toe. We assume that the fluids are Newtonian, incompressible and that body 
forces are negligible. We also consider that the flow rates are constant and that the flow fields are 
developed. On the other hand, the temperature field is two-dimensional and varies with time. 
 
The non-dimensional energy conservation equation for the fluids and the solid walls is: 

∇2 (Γ T) + S = λ (∂T/∂t) 
The expressions of the diffusion coefficient Γ, the source term S and the constant λ are given in 
Table 1. DH is the hydraulic diameter of the annulus, D1=2R1, Pe is the Péclet number, α is the 
thermal diffusivity, Vav the average velocity, k the molecular conductivity and keff the effective 
conductivity (sum of the molecular and turbulent conductivities). The indices i and o refer to the 
inside (hot) and outside (cold) fluids respectively. 
 
The analytical expressions for the velocity profiles in the circular and annular regions are known for 
both laminar and turbulent flows3. For laminar conditions keff =k and, therefore, Γ=1 for the fluids. 
For turbulent conditions, the radial distribution of the effective viscosity is calculated by applying 
the integral form of the axial momentum equation between two arbitrary cross sections. The 
corresponding distribution of keff is then found by setting the turbulent Prandtl number equal to 1. 
 
The boundary conditions at the inlet (Z=0), for t<0, are : T=1 for 0<r<0.5, T=0 for R2/D1<r<R3/D1 
and ∂T/∂Z =0 for   0.5<r<R2/D1 and R3/D1<r<R4/D1. For all t, at the exit (Z=L/D) : ∂T/∂Z =0 while 
at the axis (r=0) and at the outside surface (r =R4/D1)  : ∂T/∂r =0. 
 
The solution was obtained using CONDUCT4, a code based on the control volume approach. An 
implicit formulation was adopted for the time derivative. Several numerical tests were performed to 
ensure that the results are grid independent. The adopted grid consists of 22 radial and 52 axial non-
uniformly distributed nodes. Their density is greater near the inlet and near the fluid-solid interfaces 
where temperature gradients are most important. Validation was obtained by comparing numerical 
predictions for steady state with analytical results and for unsteady state with experimental results5.  



RESULTS AND DISCUSSION 
 
The results are for a water-to-water heat exchanger with copper tubes and R1=15 mm, R2=16 mm, 
R3=25 mm, R4=30 mm, L=3 m. The flow rates are such that Rei=Reo=5000. For these conditions 
the ratio keff /k varies from 1 to 40 in the central tube and from 1 to 400 in the annulus. Fig. 1 shows 
the initial temperature profiles at four axial positions. Very close to the inlet the temperature of each 
fluid is essentially uniform (Ti=1, To=0). Further downstream the temperature of the hot fluid 
decreases while that of the cold fluid increases. However, since the flow rate of the latter is much 
greater, the corresponding temperature change is quite small. From t=0 the temperature of the hot 
fluid increases to 1.2. Fig. 2 shows the temperature profiles shortly after the application of this step 
change. The temperature of the hot fluid at Z=0.27 and Z=10.8 is considerably higher than those in 
fig. 1. On the other hand, the temperatures at Z=34 have changed little while at Z=98.3 they are 
identical to those in fig. 1. At that instant therefore, the hot front is approximately at Z=34. Later 
(fig. 3) the profiles at the first two cross sections have not changed from those in fig. 2. They have 
reached the steady state corresponding to the new entry conditions. At this instant, the temperatures 
at Z=98.3 have started increasing, indicating that the hot front has now reached this position. 
 
Subsequently, this heat exchanger was submitted to the following conditions corresponding to 
laboratory tests6 : Rei=1876, Reo=414, inlet temperatures for t<0 : Tie=Toe=13.1 °C, inlet conditions 
for t>0 : Tie=53.1 °C, Toe=13.1 °C. The outlet temperature of the cold fluid was computed 
numerically and from an empirical formula6. The latter approximates the response by a constant, 
during an initial delay period tr, followed by an exponential decay characterized by a single time 
constant τ. The experimental values for these parameters are tr =50 s and τ=48 s while the numerical 
results are tr =56 s and τ=48.2 s. In view of the relatively good agreement between these results, we 
have performed a parametric study by varying some physical and operational characteristics of the 
system. Figs. 4 and 5 respectively show the effect of the length L and of the flow rates (or, 
equivalently, the Reynolds numbers) on the outlet temperature of the cold fluid. We note that tr and 
τ increase when L increases and when the flow rates decrease. 
 

CONCLUSION 
 

The transient temperature field in a parallel flow heat exchanger has been calculated numerically 
assuming fully developed hydrodynamic conditions. This approach uses fewer assumptions than 
published analytical studies. It shows the influence of physical and operational characteristics on 
experimentally defined parameters that describe the transient response of heat exchangers. 
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Table 1. Diffusion coefficients and source terms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Temperatures at t=0, Rei=Reo=5000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Temperatures at t=2.1 s,  Rei=Re0=5000 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Fig. 3 Temperatures at t=48 s, Rei=Reo =5000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 : Outlet temperature of cold fluid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Outlet temperature of cold fluid 
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