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Introduction 
 
The problem of flows in porous media is very important in many engineering fields such as 
geophysics, soil mechanics, automotive industry, chemical engineering and so on. In these problems 
volume average approach is usually used to obtain macroscopic properties. For example, the 
Kozeny-Carman1 equation is often used to estimate pressure drops in porous media for low 
Reynolds number, or the Ergun2 equation is used for high Reynolds number. In general the flow 
analysis in porous media has not been performed from a microscopic point of view. In particular 
conditions, for example in the transient region from laminar to turbulent flow, the relation between 
the variation of pressure drops and the change of flow structure at the pore scale is not so clear. 
Thus it is necessary to solve the problem in the porous media from a microscopic point of view. In 
this area the integration of the  Navier Stokes equations by means of conventional numerical 
methods encounters troubles with numerical instabilities. Therefore it is desirable to develop 
another computational method. In recent years the lattice Boltzmann method3,4 has developed into 
an alternative and promising numerical scheme for simulating fluid flow particularly for low 
Reynolds number and complex geometry. Starting from this characteristics in this paper the lattice 
Boltzmann method is applied to simulations of flows in a three dimensional porous structure. The 
15-velocity model is used for calculations of isothermal flow. Boundary conditions for generic 
shape internal obstacles are explained in details. A numerical tool able to generate a numerical grid  
taking into account the real geometry of the porous media, has been developed. Flow field at a pore 
scale and pressure drops in the structure are obtained for various Reynolds numbers. Calculated 
pressure drops in the structure are compared with empirical equations based on experimental data. 
 

Lattice Boltzmann Method 
 
In the lattice Boltzmann method a modelled fluid composed of identical particle whose velocities 
are restricted to a finite set of vector Ci is considered and the evolution of particle population at each 
lattice side in physical space is computed. In the computation the physical space is divided into a 
lattice e.g., a cubic structured lattice for a 3D computational domain in which 15 particles 
population are moved according to the velocity shown in figure 1. The evolution of the distribution 
function ( )txfi ,  of the particle with velocity Ci  at the point x and a time t is computed by the 
following equation: 
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where eq
if is an equilibrium distribution, τ is a single relaxation time and ∆t is the time step during 

which the particles travel a grid spacing. We use the BGK model for collision terms in equation (1). 
As in kinetic theory of gases we define density ρ, flow velocity u and internal energy e (constant in 
the present simulation in terms of the particle distribution function as: 
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and also we define pressure p in D-dimensional space by: 
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Figure 1 – lattice velocity 

 
It is found that using equations 1÷3 we can obtain the macroscopic flow velocities and the pressure 
gradients for incompressible fluid with relative errors of ( )2'εO  where 'ε is a modified Knundsen 
number, which is of the same order of lattice spacing and is related with the relaxation time. 

 

 
 

Figure 2 Flow field for Reynolds 100 



 
Boundary conditions for the distribution function are needed in the computation. In the present 
computations the following boundary conditions have been developed: 

• Inlet 
• Outlet 
• Surface of the generic obstacle 

 
A computational example of a fluid around a sphere is reported in the figures 2 and 3 in which the 
flow field respectively at Reynolds number of 100 and 20 is reported. It is clear detectable, from the 
figure, that the vortex in the rear part of the sphere passing from Reynolds 100 (figure 2) to 20 
(figure 3) decreases. 

 

 
 

Figure 3 Flow field for Reynolds 20 
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