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Abstract

We report a theoretical and numerical investigation of ifletIscattering in an absorbing medium with randomly
distributed scatterers. The extinction coefficient iswktifrom the imaginary part of the effective index derivethgs
a diagrammatic approach. The accuracy of the result isse$by comparison with a numerical solution of Maxwell’s
equations that fully accounts for multiple scattering.

1 Introduction

Modelling transport of light in scattering random media witiee host medium is absorbing is a fundamental
topic of practical importance. In this paper, we focus on dixénction coefficient in absorbing media
containing a random distribution of scatterers of arbjtisize. No general satisfying form of the extinction
coefficient has been derived yet. Indeed, the presence gfitieles modifies the field in the host medium.
Hence the absorption in the host medium is also modified byptesence of particles. In other words,
particles and host medium cannot be treated as two uncoapstedms. This entails that the scattering and
absorption cross-section are not intrinsic charactesisif the particle when the latter is embedded into an
absorbing medium. This issue has already been raised byeBehal[3] and more recently by Videeet
al.[2].

The purpose of this paper is to introduce a new model of theaidn coefficient in absorbing media
based on the effective medium theory (EMT) arising from ttedl Weveloped multiple scattering theory([4,
5, 6]. The second section outlines the key ideas of our miwlekder to assess the validity of the model, we
have implemented a numerical solution of Maxwell equations set of 2D particles (cylinders) embedded
in an absorbing host medium. We solve the problem for a latgeber of realizations and perform an
ensemble average over typicalip)0 realizations. Section 3 is devoted to the outline of thiscpdure.
Section 4 shows an example of comparison between numeinealagions and theory.

2 Diagrammatic expansion of the extinction coefficient

The key of our approach is to derive an equation for the medsh iiea random medium. This equation

has the form of a Helmholtz equation with an effective reffv@cindex. As this effective refractive index is

homogeneous, the energy flux due to the mean field coincidbghé contribution of the collimated part of

the specific intensity. The extinction coefficieiit,; is simply related to the imaginary part of the effective
wavevector m(keyy):

Kegr = 2Im(kesy). 1)
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Within the independent scattering approximation, we shidijat the effective wave vector is given by:

zi 47 Sy, (0) @)
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where Sy, (0) is the scattering matrix as defined by Bohren and Huffman y&uated in the forward di-
rection, v, is the volume of a particlef is the filling ratio of particles and the wavevector in the rixat
is k;, = npko wWhereny, is the host medium refractive index akgl is the wavenumber in free space. The
effective medium theory can be improved by taking into actoloe correlation between two particles[6, 1].
It yields the following equation for the effective wavewverct
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where g,(r) is the pair-correlation function[5, 1]. This expressiorsisctly rigorous only for small
particles and assuming a scalar behavior of the corre@ivestdue to the correlations[1]. We note that this
equation can be cast in the form:
K = kgngff(wﬂ k), 4)

wheren, ;s is an effective index that depends anso that the medium is dispersive and brso that
the medium is non-local. In what follows, we will refer to gshinodel as a non-local effective medium.
The non-local correction has to be taken into account whereletions cannot be ignored, this is the so-
called dependent scattering regime. For the sake of coagmanive report the phenomenological expression
introduced by Kugat al[8] :

Koo = 2hoTm(m) (1~ )+ +-Cors ©

p
whereC.,; is the extinction cross section of a scatterer evaluatetithe host medium was not absorbing.
This model is based on the simple idea that absorption isad ideenomenon and that the field is essentially
uniform. Within this approximation, absorption in the hostdium is proportional to the host volume. There
are many cases where this approximation is very good. Yetciear that if the particle has a resonance,
the field at the boundary is enhanced. In turn, this producgtsoag field in the host medium along the
boundary. It follows that the presence of the particle maydase the absorption in the host medium. This
discussion suggests that it is necessary to account foixtw scattering operator of the particle including
the losses of the host medium. In order to compare the 2D ncahsimulation with the effective medium
theory, we have developped a 2D version of the effective umadheory[1].

3 Derivation of the extinction coefficient from a numerical smulation

We outline in this section the derivation of the extinctiarefficient from the exact numerical solution of
Maxwell’s equation in a slab with a thicknesgontaining a 2D random distribution of dielectric disks.eTh
host medium is absorbing. We consider a p-polarized intigkaime wave. The geometry described in Fig.1
is periodic along the slab with a periddlarge compared to the wavelength and the particle size iarord
to avoid edge effects. The periodic system diffracts thalamt plane wave into a large number of discrete
directions given by the transverse wave numbgy = kinc o + p%”, wherep is the diffraction order. Disk
particles are randomly distributed in the slab with the d¢thowl that particles cannot overlap and that each
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disk is entirely in the rectangular box. For each realizatiba random distribution of particles, the reflected
and transmitted field is computed exactly using the methadarhent as it was described in ref.[9]. Since
the scatterers are randomly located, each realizatiorupesda speckle pattern. When considering the set of
solutions corresponding to a set of realizations, it praaful to split the field as the sum of the statistical
average and a fluctuating component:

E =<E > +0E, (6)

where< §E >= (0. Between 200 and 1000 realizations were generated to cerntipriiverage field. When
averaging the intensity, the speckle pattern is smoothdcaa finds the scattered intensity pattern. When
averaging the field, the speckle structure disappears anmdian field is the response of the average system
with the effective index. For a slab, we find two plane wavescsfarly transmitted or reflected.
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Figure 1: Geometry of the system

4 Comparison between numerical simulations and approximad theories

We have investigated the extinction coefficient in an akisgrimedium when the correlation effects are
important. Results are displayed in Fig.2 for differentesasWe shall discuss the effect of dielectric con-
trast, losses in the particles and correlation betweenchest Our main conclusions can be summarized
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Figure 2: Comparison between theory and numerical sinwlati
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as follows. The comparison shows a very good agreement itntlependent scattering regime. When
the dielectric contrast between particles and the hostunmeds small, the EMT model which takes into
account the correlation between pair of scatterers is il agreement with the exact result uB9%

as seen in Fig.2. For a filling ratio abo%&,, we find that for small particles, the effect of correlations
leads to a smaller extinction coefficient than predictedHeyihdependent scattering approximation, while
the tendency is reversed for large particles. It is worthchay that there is a particle size for which the
correlation effects are negligible up to ¥& It is also observed that in general, the absorption of thst ho
medium reduces the effect of the correlations allowing ongse the independent scattering approximation
for larger filling ratio. The case of large dielectric comstrdarge volume fraction and size parameter on the
order of one (the so-called resonance regime) remains anisgée.

5 Conclusion

The evaluation of the extinction coefficient for particlestedded in an absorbing medium is a long stand-
ing problem. Using the multiple scattering theory in randoradia, we have derived the expression of
the extinction coefficient from the imaginary part of theeetive index for two-dimensional and three-
dimensional cases. Taking into account correlation betwssticles position yields a non-local effective
index. In order to assess the accuracy of the model, we hagemed in this paper a direct comparison with
two-dimensional exact solution of Maxwell’s equations imadosorbing slab filled with randomly distributed
scatterers.
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