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Abstract 

The article is devoted to a new way of choosing the regularization parameters in the 
Tikhonov method as applied to inverse problems of light scattering. The derivative 
spectrum of the calculated solution is used as the selection criterion. The suggested 
method is compared with other well-known techniques such as the L-curve and the 
Generalized Cross Validation. 

1. Introduction 
 

The Fredholm equation of the first kind appears in many applied problems concerned with the 
determination of geometrical parameters of small particles:  
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where  K(θ,a) is the kernel of the integral equation, which characterizes light scattering by one 
particle with a characteristic dimension of а at an angle θ in the spherical coordinate system; ( )aω  is 
the probability density function of particles sizes; Is(θ) is the intensity of light scattered by the particle 
ensemble. It should be noted that Eq. (1) convolves the intensity of the light scattered by the particles 
with their sizes. The case of independent light scattering is considered. 

The Tikhonov regularization method is one of the techniques widely used to solve this equation. 
According to the Tikhonov method, Eq. (1) has the following operator form [1, 2]: 
 ( )* *L A A A Iαα ω+ =  (2) 

where А is an operator that corresponds to the integral equation (1), A* is the complex conjugate 
counterpart of A; ωα is the required function corresponding to ( )aω ;  I denotes Is(θ), and the operator 
L is either the identity matrix or has the following form [1]: 
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The article deals with the presentation of the operator L in form of Eq. (3). 
As the problem (1) is ill-posed, certain additional criteria [1, 2] should be applied in order to get 

acceptable results. The first derivative spectrum of the calculated ( )aω  is suggested to be used as one 
of such criteria. It is known [3] that the higher harmonics of the solution of Eq. (1) converge to the 
exact solution slower than its lower harmonics. One should find the solution the first derivative 
spectrum of which contains the smallest number of the highesto-order harmonics. In the symbolic 
form this can be put in the following equation: 

 ( )( )( )m in m a x
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where Fi is the magnitude of the i-th harmonic of spectrum F solution’s derivative ωα; αmin and αmax 
are the boundaries of the range of variation of the parameter α.  

In Eq. (4), the regularization parameter α varies within certain boundaries. The boundaries are 
determined by the application of some additional requirements. The model investigation of the 
functional given by Eq. (5) below, as described in [4], is used in order to constrain these boundaries: 
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where ωα is the solution of Eq. (1) corresponding to a certain value of the parameter α; ω is the exact 
solution of Eq. (1). 

In [4] it is shown that the functional (5) has one minimum. Since the mentioned functional is in 
fact the analog of relative error in the L2 space, the minimum of the function will be reached when ωα 
is the closest to the exact solution in the L2 space. The optimal regularization parameter value will 
correspond to that ωα. One can state that the value of the optimal regularization parameter and the 
corresponding solution is the best among all possible solutions for a given second term of Eq. (1). The 
results of a model investigation, shown in the next section, are used to determine the variational 
boundaries of the parameter α. 
 
2. Simulations 
 

The conventional Mie theory was used in order to compute the kernel of the integral equation (1). 
From the physics point of view, there are some requirements to ( )aω : this function should be 

defined from 0 to ∞ and should have a finite number of extrema; the values of ( )aω  are above zero; it 
is bounded from above by a given constant C and satisfies the following standardization condition: 
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The distributions of Raileigh, χ2, Nakagami, Gamma etc. satisfy the requirements. In this article 
the distribution of Raileigh and χ2 are used as an approximation of the particle size distribution. These 
approximations are described in [5] and [6]. 

In order to make the analysis more realistic, families of Raileigh and χ2 distributions were used 
instead of one fixed form of the probability density function (PDF). The used PDF families are shown 
in Fig. 1. 

 
The following simulations were performed to determinate the boundaries of the “best” 

regularization parameter magnitudes, i.e., the parameter values that in each case, when the equation is 
solved, correspond to ωα which is the closest to the exact solution. In the simulations such 
regularization parameter values, that minimize Eq. (5), were segregated. 

The frequency diagrams of the regularization parameter values spread are presented in Fig. 2.  

 
Figure 1: Families of Raileigh and χ2 distributions 
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Figure 2 shows that α values are concentrated in certain limits for both families of distributions. In 

the case of the Raileigh distribution family the values of α parameter are within 10–69 – 10–71, as for 
the χ2 distribution family they are within 10–65 – 10–72. These regularization parameter limits were 
used to calculate the solution of the Fredholm equation of the first kind by applying the criterion (4). 

It is reasonable to present the solution of Eq. (1) for distribution families in the form of the errors 
described by Eq. (7): 
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where ( )jaω  is the exact solution at aj, ( )jaαω  is the calculated solution at aj. 

 

 

 
Figure 3: Results of ( )aω  computatation for families of Raileigh and χ2 distributions. 

 
Figure 2: Spread of optimal regularization parameter values. 
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In Fig. 3 the results of ( )aω  computations for families of Raileigh and χ2 distributions are shown. 
By fixing the particle size value а one can see the boundary values of ( )iaω  and relative frequency of 
calculated ( )iaω  on the y axis. In fact, having the fixed particle radius magnitude we deal with a 
histogram of the spread of ( )iaω  determination errors values. Instead of the usual histogram 
frequency, the relative frequency is used. The same colors correspond to the ( )aω  values that occur 
with the same relative frequency.  

Similar simulations were also performed for other methods of regularization parameter 
determination such as the L-curve [7, 8] and the Generalized Cross Validation [9]. Comparison of the 
derivative spectrum method with the L-curve and Generalized Cross Validation methods proved the 
advantages of the suggested method. 

  
3. Conclusions  

 
The new way of regularization parameter determination in Tikhonov regularization method is 

proposed. The advantages of the suggested method over the L-curve and Generalized Cross 
Validation techniques are demonstrated. 
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