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Abstract

Horizontal incidence and reflection by a plane-parallel atmosphere is investigated. A peculiar
discontinuity of the reflected intensity is discussed. Several interesting properties of the bidirectional
reflection function are presented, together with some applications.

1 Introduction

One of the best studied problems in multiple scattering theory is the reflection of radiation by a plane–
parallel medium filled with independently scattering particles and illuminated at the top by a parallel
beam of radiation, see e.g. [1]-[6]. In most publications the limiting case in which both the direction of
incidence and that of reflection become grazing is not treated at all, or only touched upon. To fill this gap
in multiple scattering theory we embarked some time ago in an investigation of this intriguing case. This
has resulted in two papers, [7] and [8], dealing with the intensity (radiance) and polarization, respectively,
of the reflected radiation. Here we focus on properties of the bidirectional reflection function.

2 Theory for horizontal directions

We consider a plane–parallel atmosphere or similar medium filled with randomly oriented particles that
scatter radiation independently and without change of wavelength. The medium may be vertically inho-
mogeneous and semi–infinite or finite with or without a reflecting surface underneath. Suppose a parallel
beam of radiation with net flux,πF0, per unit area normal to itself is incident on every point of the top
of the medium. Ignoring polarization we write the (specific) intensity of the reflected radiation emerging
at the top of the medium in the form

It(µ, µ0, φ − φ0) = µ0R(µ, µ0, φ − φ0)F0, (1)

with arccos µ the angle of the direction of the reflected light with the upward normal,arccos µ0 the
angle of the direction of the incoming radiation with the downward normal,φ andφ0 the corresponding
azimuth angles andR(µ, µ0, φ − φ0) the bidirectional reflection function (BRF). It should be noted that
0 ≤ µ ≤ 1 and0 ≤ µ0 ≤ 1, whereµ = 0 means grazing reflection andµ0 = 0 grazing incidence.
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Before presenting properties of the BRF we summarize some of the main results of [7], in which
rigorous proofs are given. For the medium under consideration we have

lim
µ0→0

It

n(µ, µ0, φ − φ0) = 0 (µ ≥ 0 and n ≥ 2), (2)

lim
µ,µ0→0

It(µ, µ0, φ − φ0) = lim
µ,µ0→0

It

1(µ, µ0, φ − φ0), (3)

lim
µ,µ0→0

It(µ, µ0, φ − φ0) =
at

4(c + 1)
Zt(cos(φ − φ0))F0, (4)

wheren denotes the order of scattering,at the albedo of single scattering at the top,Zt(cos Θ) the phase
function at the top withΘ the scattering angle, andc a number that depends on howµ andµ0 approach
zero. More precisely, if we approach the origin of a Cartesian co–ordinate system, withµ0 as the abscissa
andµ as the ordinate, along a curve given by the functionµ = g(µ0), the slope at the origin ofg(µ0)
is c (see Fig. 1). Thus, for a straight line we haveµ = cµ0. For all curves we have0 ≤ c ≤ ∞, since
µ andµ0 are nonnegative. Therefore, for grazing incidence and reflection only first order scattering at
the top of the medium contributes to the reflected intensity, but it has a peculiar discontinuity. The factor
1/(c + 1) may take any value in the closed interval[0, 1], depending on howµ andµ0 tend to zero. It is
zero if we first letµ0 tend to zero and then do the same withµ, but it is unity if µ is the first to become
zero.

An important consequence of Eq. 4 is that, for a given value ofc, the way in which the reflected
intensity depends on azimuth in grazing incidence and reflection is proportional to the way in which the
phase function at the top depends on the scattering angle. A similar statement was made by Minnaert in
1935 [9], but he did not mention the occurrence of a discontinuity, nor did he provide a rigorous proof.

We can now use the results for the intensity of the reflected light in the case of grazing incidence and
reflection to derive properties of the BRF. Combining Eqs. 1 and 4 we find

lim
µ,µ0→0

µ0R(µ, µ0, φ − φ0) =
at

4(c + 1)
Zt(cos(φ − φ0)). (5)

Multiplying both sides of Eq. 1 byµ/µ0 leads to

lim
µ,µ0→0

µR(µ, µ0, φ − φ0) =
atc

4(c + 1)
Zt(cos(φ − φ0)). (6)

Consequently, a peculiar discontinuity occurs, when the BRF is multiplied byµ or µ0. If c = 1 the two
limits in Eqs. 5 and 6 are the same. Generally, the one is obtained from the other by replacingc by 1/c.
Since both limits are bounded it is clear thatµµ0R(µ, µ0, φ − φ0) = 0 if µ = µ0 = 0.

By adding Eqs. 5 and 6 we obtain the simple relation

lim
µ,µ0→0

(µ + µ0)R(µ, µ0, φ − φ0) =
at

4
Zt(cos(φ − φ0)), (7)

which is independent of howµ and µ0 tend to zero. Hence, adding the two peculiar discontinuities
results in no discontinuity. We have thus obtained a rigorous proof of Eq. 7 for the general case of an
inhomogeneous atmosphere which is semi–infinite or bounded by a reflecting surface. Eq. 7 has been
reported without a rigorous proof for a semi–infinite homogeneous atmosphere by e.g. [3].

For natural and realistic model particles the right–hand side of Eq. 7 is always positive. Therefore,
we must have

lim
µ,µ0→0

R(µ, µ0, φ − φ0) = ∞, (8)
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Figure 1: A point,P , approaches the origin,O, along a curve given byµ = g(µ0), which has a slope,c,
atO with respect to the positiveµ0-axis. The tangent of the curve atO has also been drawn.

irrespective of the way in which this limit is taken, since any other result would be in conflict with Eq. 7.
So the BRF itself has a discontinuity forµ = µ0, but not a peculiar one. This is illustrated in Fig. 2
for a homogeneous, non–absorbing, semi–infinite atmosphere with isotropic scattering andµ = µ0. As
shown by [1] and later by [2] we have in this very simple case

R(µ, µ, φ − φ0) =
1

8µ
H2(µ), (9)

whereH(µ) is a well–known function that can be calculated by solving an integral equation and increases
from 1 for µ = 0 to 2.9 forµ = 1. Figure 2 is based on a table (forϕ(µ) = H(µ)/2) given by [10].
Apparently the factor1/µ is the main cause of the strong increase of the BRF in Fig. 2 asµ tends to
zero. For comparison Chandrasekhar’s functionS(µ, µ0, φ− φ0) [2] for µ = µ0 is also shown in Fig. 2,
illustrating its simpler behavior for small values ofµ as compared to the BRF.

It should not be assumed that the discontinuity of the BRF forµ = µ0 = 0 will never cause any
problems upon integration. For example, in the case of isotropic scattering in a homogeneous, semi-
infinite medium we readily find from the definition of theH-function

∫

1

0

R(µ, µ0, φ − φ0)dµ =
1

2µ0

[H(µ0) − 1] , (10)

which tends to infinity ifµ0 tends to zero [4].

3 Applications

The results presented in Sect. 2 can be used for various applications, as shown by the following examples.
1. Checking formulae valid for generalµ andµ0 in multiple scattering theory by letting both tend to
zero.
2. Similarly, for numerical results, even for complicated models of atmospheres and oceans.
3. Interpolation of the BRF for small values ofµ andµ0, e.g. by first multiplying the BRF by(µ + µ0).
4. Using Eq. 7, approximate values for the phase function in the upper part of a cloud deck or aerosol
layer can be obtained from observations for near grazing incidence and reflection. When this is done for
a sufficient number of azimuthal angles integration over these angles yields an approximate value for the
albedo of single scattering in the top layers, since the spatial average of the phase function equals unity.
The necessary observations can be done, for instance, by a detector at a mountain top or in an airplane.
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Figure 2: Bidirectional reflection function (R) and Chandrasekhar’s function (S) of a non–absorbing,
homogeneous, semi–infinite atmosphere with isotropic scattering in caseµ = µ0. Here,S = 4µ2R.

5. Numerous approximation formulae for the BRF of plane-parallel media have been proposed. It is clear
now that some of these cannot be accurate for near grazing incidence and reflection. This holds especially
for the well-known ”Lambert reflection law”, which implies that the BRF would remain constant instead
of tend to infinity when the directions of incidence and reflection become more and more horizontal.
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