
Coherence effects, Merchiers     117 

Coherence effects in systems of Dipolar Bi-Spheres 

O. Merchiers1 , F. Moreno1, J.M. Saiz1 and F. González1  
1 Universidad de Cantabria, Grupo de Óptica, Departamento de Física Aplicada, 

Avda de los Castros, 39005 Santander, Spain 
tel: +34 942 201868, fax: +34 942 201402, e-mail: olivier.merchiers@unican.es 

Abstract 

We study the behavior of the Negative Polarization Branch (NPB), using a scattering 
system which consists of two dipolar scatterers separated by a fixed distance and freely 
floating in space. For such a system, a resonance spectrum is obtained if one plots the 
scattering cross-section as a function of the polarizability. The excited resonances 
correspond with specific oscillation modes of the electric (and magnetic) dipole moments 
and arise due to the interaction between the dipoles. We show that the NPB can be 
generated if the system is put into the right resonance mode, but can also be suppressed if 
placed in a so called longitudinal mode. The effect of a magnetic permeability different 
from one on the NPB will also be considered. 

1 Introduction 
Coherence effects in or close to the backscattering direction have been the focus of attention of many 
researchers involved in the theoretical and experimental analysis of the propagation of electromagnetic 
waves in random dense media where multiple scattering is important. On one hand we have the 
enhancement of the scattered intensity in the backward direction (EBS) and on the other hand we have the 
polarimetric opposition effects. Based on observations, two types of opposition effects are usually 
distinguished. The first one, often called the polarization opposition effect (POE) which appears as a 
narrow asymmetric branch and the second one, often referred to as negative polarization branch (NPB) 
and appears as a wide symmetric branch around the backward direction in the linear polarization 
coefficient (LPC) [1,2]. It is considered that the coherent backscattering mechanism is responsible for the 
EBS, the POE and the NPB [3]. However, it is assumed that the coherent backscattering is not the only 
contribution to the NPB. These phenomena have been observed in experiments related to the scattering of 
unpolarized electromagnetic radiation by astronomical objects [1] and have also been reproduced in 
laboratory experiments with both volume and surface geometries [2,3]. 
 

In this work we present a study of the previously cited NPB using a model constituted by two dipoles 
separated by a fixed distance. We will call this system a Dipolar Bi-sphere (DBS). This simple model has 
already been introduced by other authors to study coupling resonances [4] and the EBS [5]. The aim of 
this contribution is to study the effect of coupling resonances of the DBS on the coherence effects [6], for 
both non-magnetic (μ = 1) and magnetic particles (μ ≠ 1). The reason why we introduce the magnetic 
permeability in our study is because of the high interest for metamaterials during the last six years. While 
only very recently those materials have been seen to operate in the visible region [7] and only for slab 
geometries, an early theoretical study by Kerker et al. [8] showed that small spheres with μ ≠ 1 have some 
very interesting scattering properties. Herein lays the interest of studying scattering systems with 
magnetic properties. 

2. Theory 
To obtain the scattered electromagnetic field from our system, we used a generalized version of the 
coupled dipole method [9] which was introduced by Mulholland et al. in [10]. This generalized method 
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enables us to compute the scattered electric field when the scatterers have a magnetic permeability 
different from 1. However, the method can equally well be applied for particles with μ = 1. The method 
consists in writing each electric (di) and magnetic dipole moment (mi) as a contribution of the incident 
field and the dipole moments induced by the rest of the particles. One has then to solve the system of 2N 
linear vector equations in di and mi given by 
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where Cij and Gij are the interaction matrices and αe

j and αh
j are the electric and magnetic polarizabilities 

respectively. Once the electric and magnetic dipole moments are obtained by matrix inversion, the 
scattered electric field is easily obtained.  

The calculations are made for NT  random orientations of the scattering system, we then obtain an 
averaged value of scattering cross-section σS. 

 

3. Results 

3.1 Particles with μ = 1 

In figure 1(a) we show the averaged scattering cross section for ε = −2.013, μ = 1 and P-polarized 
incident light versus the interparticle distance r between the particles. The results for the S-polarization 
are identical due to symmetry. As can be seen in figure 1a, successive resonances are excited. Each one of 
these resonances correspond to a specific oscillation mode of the dipoles.  
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Figure 1: (a) Scattering cross-section σS  as a function of the interparticle distance  
for ε = −2.013, μ = 1. The arrows show the oscillation mode for each  
dipole when placed in the corresponding resonance. (b) LPC        min and |LPC| max obtained  
for totaly unpolarized incident radiation. 
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Figure 1(b) represents two aspects of the linear polarization coefficient (LPC). LPC  min    represents the 
minimum of the LPC in the interval of scattering angles from 0º to 180º  and |LPC| max  is the maximum of 
the absolute value of the LPC in the same interval. We see that the peaks (2), (3) and (4) of figure 1(a) 
correspond to minima in the LPCmin. This means that the resonances (2), (3) and (4) produce NPB. This is 
not the case for resonance (1), which instead creates a minimum in the plot of |LPC| max vs r. From figure 
1, we could thus deduce that for an interparticle distance r = λ, the produced NPB is entirely generated by 
the contribution of mode (2). However, an other analysis based on the eigenvector decomposition of the 
local dipole moments (see equation (2)) shows that the anti-symmetrical state does also contribute to the 
NBP. 
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where |n〉 and wn are the eigenvectors and eigenvalues respectively of the total interaction matrix. 
|Eo〉 represents the incident field. These vectors have all 3N elements and contain the oscillation modes 
or the incident electric field on each particle. 

3.2 Particles with μ ≠ 1 

In the previous section we saw that the coupling between two electric dipoles produces four types of 
modes: transversal and longitudinal modes, where both of them have symmetric and anti-symmetric 
variants. If we now introduce magnetic dipoles (μ ≠ 1), new modes appear. We still have the purely 
electric longitudinal modes, but now we have also their purely magnetic counterpart. The transversal 
modes appear now as mixed electric and magnetic states.  

As an example, we will choose here μ = −1.6. The scattering cross section as a function of 
interparticle distance is represented in figure 2(a). We observe similarities but also differences between 
this case and the previous one with μ = 1. The peak centred in r/λ = 1.5 is now the most important. As 
can be seen from figure 2(a), the mode corresponding with interparticle distance r/λ = 1.5 has anti-
symmetrical electric and symmetric magnetic components. 
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Figure 2: (a) Scattering cross-section σS   as a function of the interparticle  
distance for ε  = −2.166 and μ = −1.6. (b) LPC obtained for totally  
unpolarized incident radiation. 

 
In the LPC plot we see for r/λ = 1.5 a strong minimum with negative values, which indicates a negative 
polarization branch. This plot was obtained for a scattering angle of ϑS = 150º which is the direction 
where the minimum of the NPB usually occurs. The same happens for r/λ = 1.0. In r/λ = 0.7, the linear 



120 Tenth International Conference on Light Scattering by Non-spherical Particles 

polarization doesn't become negative which indicates again a qualitative difference between the 
resonances.  

 

4 Conclusions 
We studied the resonance spectra and the linear polarization coefficient of a Dipolar Bi-Sphere as a 
function of the interparticle distance where the constituents can be considered magnetic or non-magnetic. 
Depending on the type of excited resonance, we can or cannot produce a negative polarization branch. In 
the case of non-magnetic particles with r/λ = 1.0, we found that both the transversal symmetrical and anti-
symmetrical states do contribute to the negative polarization branch. 

For magnetic particles the highest peak was found for r/λ = 1.5 corresponding with an anti-symmetric 
electric and symmetric magnetic mode and produces NPB.    

These results point out that not only the presence of multiple scattering is important, but that the 
oscillation mode plays also a fundamental role. 
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