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Abstract

We introduce the  method  to  shorten  the  number  of  iterations required  in  the  linear
equation  solutions  of  DDA.  In  the  linear  equation  solution  in  DDA,  the  solution  is
iteratively solved. We give the initial guess, which is close to the actual solution infered
from  parameters  close  to the  selected one.  We apply the  method for  the  orientation
averaging of scattering properties of non-symmetric particles. The method reduces the
number of iterations into less than 10% for non-symmetric particles with moderate shape
variations against the direction of incident light when the interval of the grid angles is set
as  5 degree.  On the  other  hand,  non-symmetric  particles  with  high  shape variations
against the direction of incident lights shows iteration ratio of less than 25%. 

1 Introduction

Discrete Dipole Approximation (DDA) is a powerful tool to treat light scattering problems of irregularly
shaped particles [1]. In the DDA calculations, the shape is described with a number of dipoles, then the
multiple interactions of the incident light between the dipoles are solved. Compared with other methods,
DDA has the advantage in treating shape with dipoles making the calculation possible for irregularly
shaped particles without any symmetry. On the other hand, the disadvantage of DDA is that the linear
equations are required to be solved for every variations in the parameter of the particle (e.g. size, shape,
refractive index, etc.) and for the direction of incident lights.   
    In order to apply the calculation of DDA into the remote sensing, such as retrieval of atmospheric
aerosol  properties,  cometary  dust,  and  dust  on  the  surface  of  Asteroids,  reduction  of  the  DDA
calculations  for  parameter  variations  of  the  particles  are  indispensable.  In  this  study,  we  apply  the
method to reduce the iterations in the DDA calculation for the variations in the particle orientation.

2 Reduction of the iterations 

In the DDA calculation, the polarizability of all the dipoles are solved based on the iterative method (e.g.
Conjugate Gradient Method) [1]. In the iterative method, the initial  value of the dipole polarizability
(hereafter  as  initial  guess)  is  set  arbitrarily  (e.g.  CMPLX(0.0,  0.0))  since  the solution  of  the  linear
equations (i.e. dipole polarizability) is not known at the beginning of the iteration.
    Muinonen and Zubko (2006) proposed the method to give the initial guess by extrapolating from the
results of similar size or of similar refractive index to the selected parameter of the particle. This is
because, small variations in the size or in the refractive index are considered to have only small influence
in the polarizability of dipoles. Then the calculated initial guess is close to the solution of the selected
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parameter resulting in the reduction of iterations. In their study, extrapolation are used to calculate the
initial guess of the polarizability for size variations or for variations in refractive indices.
    In this study, we apply the same method for the orientation averaging of scattering properties. For the
orientation variations, the interpolation of the initial  guess is always possible by using values in both
sides of the selected orientation. Since the interpolation is considered more accurate than extrapolation,
the proposed method has more advantage in the proximity of the initial guess to the solution. We use
spline  interpolation  [3]  to  calculate  the  initial  guess  of  the  selected  orientation  from  the  results  of
orientations close to the selected one.
    We define the orientations, with which the interpolation is conducted, as “grid angles”. Before the
calculation with the proposed method, the dipole polarizabilities for grid angles are calculated with the
DDA method and are stored into the files. Then, the calculation with the proposed method is performed
after  interpolating  initial  guess  from  the  stored  polarizabilities  of  grid  angles  close  to  the  selected
orientation. 
    We define “iteration ratio” as the ratio between the number of iterations in proposed method and those
in original calculation to investigate the efficiency of the method applied for orientation variation. We
use public domain DDA code “DDSCAT6.1” developed by Dr. Draine and his colleague [1].

3 Efficiencies and Accuracies

As non-symmetric particles, we use “Gaussian Sphere (hereafter as GSP)” and “Overlapping mixture of
multiple tetrahedra (hereafter as OMMT)” as shown in Fig.1.  The former is produced to have moderate
surface  roughness  with  the  selected  parameters  of  Gaussian  Sphere  while  the  latter  shape has  high
surface roughness  causing  high orientation  dependence of  the shape against  the direction  of incident
light. The GSP described originally with a number of triangular facets [4] are converted into the shape
described  with  dipoles  following  Muinonen  et  al.  (in  Press)  [5].  OMMT  is  created  by  using  the
tetrahedra composed of dipoles, which is produced with “calltarget” program in DDSCAT6.1 [1], then,
by sequentially adding randomly rotated tetrahedra into the particle.
     In the DDSCAT6.1, the angle of the particles against the direction of incident light is configured with 
beta, theta and phi [1]. In this study, we arbitrarily set theta=20.0 and phi=15.0, then rotate the particles
in the direction of beta from 0 to 360 degree. 
     In this study, we set grid angles as 5 degree. Therefore the precalculation of dipoles for 73 grid angles
are  required.   After  calculating  for 73 grid angles,  we performed the  calculation  with the proposed
method with interpolation. The interpolation for orientations is conducted by using 8 grid angles close to
the  selected  angle.  The “8”  is  arbitrarily  chosen  in  this  study.  We investigate  for  the  particle  size
parameter for the equivolume sphere as 7.0. The refractive index is selected as m=1.60 + 0.01i.
     Fig.2 shows the iteration ratio for GSP and for OMMT. The iteration ratios are less than 10% for GSP
and less than 25% for OMMT. This iteration ratio depends on the interval of grid angles, which is set as
5 degree in this study. We also investigate the iteration ratio for GSP and OMMT with the grid angle
interval of 10 degree.  The result (not shown here) is that the iteration ratio is increased for the central
angle between grid angles, while for the orientations close to the grid angles, the iteration ratio become
small similar to those shown in Fig. 2.
    In order to investigate the accuracies of calculated scattering properties, we have compared scattering
properties calculated 1) with original DDASCAT and 2) those with the proposed method for the angles
beta from 0 to 360 degree with the step of 0.5 degree. Fig.3 shows the example of the comparison of
absorption (Qabs) and scattering properties (Qsca) of the OMMT for the variation of the  beta angles.
Fig.4  shows  the  comparison  for  the  scattering  function  S11  and  polarization  -S12  /  S11  where
beta=113.5 for OMMT.  The errors (i.e.  |    Qoriginal  -    Qproposed   | / Qoriginal*100   [%]  ) caused by the
proposed  method  are  less  than  0.013%,  0.08%,  0.09%,  5.58%  for  Qabs,  Qsca,  S11,  -S12  /  S11,
respectively. The errors of S11 and -S12 / S11 for different beta angles are also in the same order.
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Figure 1: Shapes of the particles composed of a number of dipoles shown in XY (left), YZ (middle), and
XZ plane (right). Gaussian sphere (upper panel) and overlapping mixture of multiple tetrahedra (lower

panel) are considered.

Figure 2: The iteration ratio for GSP and OMMT where the interval of grid angles is 5 degree.

4 Summary

The reduction method of the iterations in the linear equations are applied for the orientation variations of
irregularly shaped particles. Non-symmetric particles with moderate orientation dependence of the shape
(i.e. Gaussian Sphere) have gained large advantage with the iteration ratio of less than 10%. While, non-
symmetric  particles  with  large  orientation  dependence  of  the  shape  (i.e.  OMMT)  has  also  gained
advantage with iteration ratio of  less than 25%. We have known that the iteration ratio becomes larger
for larger intervals of grid angles at central angles between grid angles. We are now trying to devise
efficient division of orientation angles to reduce total number of iterations in DDA calculations in order
to conduct DDA calculation efficiently for the 3D orientation averaging.
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Figure 3:  The comparison of Qabs and Qsca of OMMT for the original and the proposed method

Figure 4: The comparison of S11, and -S12 / S11 of OMMT where beta=113.5.
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