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ABSTRACT   
 
The HN method, employed for studies in neutron transport theory, is used to establish 
numerical results basic to the vector equation describing the transfer of polarized light in a 
Rayleigh scattering atmosphere with true absorption1,2. The method has been applied to the 
half-space albedo problem.  
We consider the vector equation of transfer in plane geometry3,4, 
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( )τ µI ,  is a vector whose two components I ( )τ µ,l  and I ( )r τ µ,  are the angular intensities 
in the two states of polarization.τ is the optical variable, µ  is the direction cosine (as 
measured from the positive τ axis) of the propagating radiation, and [0,1]ω ∈  is the single-
scattering albedo. Here µTQ ( ) denotes the transpose of µQ( ) 5 
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The parameter c , [0,1]c ∈  is a measure of the Rayleigh component of scattering law: 1c =  
and 1ω =  would yield Chandrasekhar's conservative Rayleigh-scattering case, 1ω = and 

[0,1]c ∈  is Chandrasekhar's conservative case for a mixture of Rayleigh and isotropic 
scattering laws. 1c =  and [0,1]ω ∈  yields general Rayleigh scattering6.The general solution 
of Eq.(1) can be written as 
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here 0( )A η±  and the vector 1 2A Aη η( ), ( )  are the arbitrary expansion coefficients to be 
determined once the appropriate boundary conditions are specified7. The discrete and 
continuum normal modes are written respectively as  
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Let us consider the half-space medium at 0x > and vacuum at 0x < . In Eq.(1) neglecting 
0( )A η−  and 1 2A Aη η− −( ), ( ) , we write the required solution as  
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For the half-space albedo problem we seek the solution of Eq.(5) which satisfies the 
following boundary condition8 

0(0, ) ( ) 0µ δ µ µ µ µ= − >0I F ,    ,              (6) 
where F  is a constant vector. The expansion of exit distribution can be chosen as 9 
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To get the expansion coefficients in Eq.(5), it is multiplied by 0
T ( , ) , ( , )µ ξ µ ξ η η= ±Φ , 

integrated over µ , ( 1, 1)µ∈ − +  and used the orthogonality relations5 
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here  
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Now we consider the exit distribution in Eq.(5) replacing µ  with µ−  and multiplying it 
by 1mµ + , integrating over (0,1)µ∈  we obtain 
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The numerical results of the required albedo values, as functions of the single scattering 
albedo and c  which is a measure of the Rayleigh component of scattering law, can be 
obtained from the following equation  

1 1

0 0

1 1
(0, ) (0, )

1 1

T T

d dβ µ µ µ µ µ µ
   

= −   
   
∫ ∫I I           (14) 

where αa can be found from Eq. (12).  
 
 

REFERENCES 
 
1. Tezcan, C. Kaşkaş, A. and Güleçyüz, M. Ç., The HN Method for Solving Linear 

Transport Equation: Theory and Applications, J. Quant. Spectrosc. Radiat. Transfer, 
Vol. 78, pp 243-254, 2003. 

2. Karahasanoğlu Şenyiğit, M. and Kaşkaş, A., The HN Method for Milne Problem with 
Polarization, Astrophysics and Space Science, (In press) .  

3. Mourad, S., A. and Siewert, C., E., On Solutions of An Equation of Transfer for A 
Planetary Atmosphere,  Astrophys. J,  Vol. 155, pp 555-564, 1969.  

4.  Schnatz, T., W. and Siewert, C., E., Radiative Transfer in A Rayleigh-Scattering 
Atmosphere with True Absorption, J. Math.Phys, Vol. 11, pp 2733-2739,  1970. 

5. Bond, G. R. and Siewert, C. E., On the Nonconservative Equation of Transfer for A 
Combination of Rayleigh and Isotropic Scattering,  Astrophys. J, Vol. 164, pp 97-110, 
1971. 

6.  Siewert, C. E., A Concise and Accurate Solution for A Polarization Model in 
Radiative Transfer, J. Quant. Spectrosc. Radiat. Transfer, Vol. 62, pp 677-684, 
1999.  

7. Burniston, E. E. and Siewert, C., E., Half-Range Expansion Theorems in Studies of 
Polarized Light, J. Quant. Spectrosc. Radiat. Transfer, Vol. 11, pp 3416-3420, 1970. 

8. Schnatz, T. W. and Siewert, C., E., On the Transfer of Polarized Light in Rayleigh-
Scattering Half Spaces with True Absorption, Mon. Not. R. Astr. Soc., Vol. 152, pp  
491-508, 1971. 

9. Siewert, C. E., On Using the FN Method for Polarization Studies in Finite Plane-
parallel Atmospheres, J. Quant. Spectrosc. Radiat. Transfer, Vol. 21, pp 35-39, 
(1979). 

 


