Sarcomere Mechanics in Uniform and Nonuniform Cardiac Muscle

HENK EDJ ter KEURS¹, AMIR LANDESBERG², YUJI WAKAYAMA³, YING MING ZHANG³, YOSHINAO SUGAI³, MASAHITO MIURA³, GUY PRICE⁴, YUTAKA KAGAYA³, PENELOPE A BOYDEN⁴, BRUNO DM STUYVERS⁴

¹University of Calgary, Canada, ²Technion, Israel Inst Technology, Haifa Israel, ³Tohoku University Graduate School of Medicine, Sendai, Japan ⁴Columbia University, New York USA

> ABSTRACT: The heart pumps owing to a cycle of membrane currents and Ca²⁺ fluxes among the sarcoplasmic reticulum (SR) and Troponin-C (TnC) on actin, and cross bridges (XBs) that interact with the cardiac load. Starling's Law and the ESPVR in the uniform heart reflect the effect of sarcomere-length (SL) on myocyte stress (σ) development. We analyzed the mechanisms underlying the σ -SL-[Ca²⁺]_{free} relationships (σ -SL-CaR) in rat cardiac muscle using a kinetic model testing whether the rates of TnC-Ca²⁺ binding and cross-bridge (XB) cycling are determined by SL, $[Ca^{2+}]$ or σ . The analysis shows that dependence of TnC-Ca²⁺ affinity on the number of strong XBs is the dominant mechanism that regulates XB recruitment. Application of this concept in a mathematical model of twitch σ development accurately reproduces both the σ -SL-CaR and time course of both twitch force and intracellular $[Ca^{2+}]_i$ transient. This concept has important repercussions for the non-uniformly contracting heart as is shown in damaged muscle, where arrhythmogenic Ca²⁺ waves underlying triggered propagated contractions start during relaxation near the damaged region. The initiation of these waves clearly depends on the relaxation dynamics. Similarly, rendering a short muscle segment (300 µm) weak by a jet of modified (by low [Ca]_o, BDM or Caffeine) Hepes solution, initiates Ca²⁺ waves in the border between the jet region and the remainder of the muscle. If the jet contained high $[Ca^{2+}]_0$ the waves started inside the jet region. Jets containing modified Hepes buffer reversibly induced arrhythmias.

> Modeling the response of the cardiac twitch to rapid force changes using the above feedback model uniquely predicted cardiac dynamics, including the occurrence of $[Ca^{2+}]_i$ transients as a result of accelerated Ca^{2+} dissociation from Tn-C and convincingly suggest that force feedback to Ca^{2+} binding by Tn-C leads to Ca^{2+} release from TnC in non uniform myocardium, which initiates arrhythmogenic propagating Ca^{2+} release by the SR.

KEYWORDS: Cardiac mechanics, arrhythmias, model studies

Address for correspondence: Prof Henk EDJ ter Keurs, MD, PhD, School of Medicine, Dept Physiology, Univ of Calgary, 3330 Hospital Dr, N.W., Calgary, Alberta T2N 4N1, Canada, Fax: (403)270-0313

Email: terkeurs@ucalgary.ca