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The flow and heat transfer of impingement jets cooling dep@mdmany parameters such as nozzle-
to-wall spacing, Reynolds numbers, distance from the stammpoint or design of the injection.The
most commonly used geometries in previous studies arerarisic (circular hole or pipe) and slot
(two-dimensional) nozzles [Gardon and Akfirat 1965, Hoafpenn 1977, Yokobori and al. 1979,
Goldstein and al. 1986 and Narayanan and al. 2004]. In iateane cooling, cool air pass through
an impingement channel perforated with multiple holes &ed multiple jets impinge on the internal
side of the vane (see Fig.1). In the present study, the gepmet single jet impinging on a flat plate,
in order to represent a situation corresponding to the fsad# and the backside of a vane. In this
way, the experimental setup consists of a main crossflowfe¢gsbng an injection hole of diametéy,
through a thin plate of thickneggsee Fig.2). A secondary crossflow is fixed between the exfiief
nozzle and the impingement wall, to simulate the flow streaaceation from the leading edge to the
trailing edge of the vane. Aerodynamic parameters are thadtéy numberse;,...: (Characterizing
the flow field in the jacket cooling circuit and varying from @00 to 60 000) Re;,; (in the injection
hole and varying from 5 000 to 23 000) aft,; ., (in the air-gap and varying from 0 to 1000).
Geometrical parameters are the nozzle-to-wall distdfaeith 2 < H/D, < 10 and the thickness
of the injection plateg with 0.8 < t/D, < 1.2. The experimental setup is then representative of an
internal vane cooling configuration with the assumptionrofrapingement on a flat plate (typically
at the frontside or the backside of the vane) and where tketion plate has a thickness comparable
with the injection hole diameter.
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Figure 1: Representation of a vane
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Figure 2: Sketch of the test section

To determine Nusselt number distributions, the impingemell is heated with an electric circuit
and its temperature is measured by InfraRed thermograplg/.c@hvective heat transfer coefficient
is calculated from the balance of different heat fluxes okierimpingement plate with the method
detailed by Eenot and al.[2005]. It consists of a linear regression ofveotive heat fluxes o,
and wall temperatures; on the face exposed to the jet impingement (the front faca)example of
Nusselt numbeN v distributions on the front face is shown on figure 3.

A non-axisymetric behaviour in the distribution &fu is observed due to the complexe geometry of
the test section. The Nusselt number at the stagnation paigt and the averaged Nusselt number
Nu based on area equivalent to al3,0diameter disc are also investigated, providing elemenoof-c
parison of the global efficiency with axisymetric jet. Reshow that heat transfers are significantly
lower than in previous studies with a jet issuing from a lomgepand that evolutions aVu,, and
Nu with respect to the nozzle-to-wall distance is very difféareompared to cases where a jet issued
from a long pipe impinges on a flat platéVu,, presents two local maxima subsequently lying at
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Figure 3: Nusselt number distribution and comparison
with a jet issued from a long pipe §iot 2004] atRe;,; = 23000 andH /D), = 2
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Figure 4: Repartition 0dU, /0= near the entry of the injection hole

H/D;, = 4andH/D,, = 6, and a local minimum ak// D;, = 5 while, Nu increases until{/D;, = 6
and then decreases with the nozzle-to-wall distance. Hgmation point position is not significantly
influenced by the geometry.

PIV measurements are undertaken for obtaining a better rapsion of the flow field. In a free
jet issuing from a long pipe, the topology of the flow field candivided into three zones: the po-
tential core, the transition zone and the fully developpewez In the present study, it appears that
the potential core region does not exist and that the flow feelkry heterogeneous at the exit of
the injection hole. Two main vortices appear at the injechole. It is shown in figure 4, where the
0U, /0= component determined from mass conservation equatioraigrdat a plane parallel to the
injection plate near the entry of the hole. More precisdigse structures are mainly concentrated
in lower half portion of the injection hole<{0.5 < y/D;, < 0) (see Fig.5) and a recirculation zone
exists in its upper half portior)(< y/D;, < 0.5). The jet then makes a slight angle but the point of
stagnation remains centered which is coherent with Nussetiber distributions. Deeper analysis of
the PIV measurements will provide more precise information the flow field and on its influence
on the heat transfer.
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Figure 5: Example of distribution of normalized mean velpéi /U
in planes containing the center of the hole (wittihe averaged exit velocity)
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